Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Covers

Related Publications

Overcoming the kinetic and deactivation limitations of Ni catalyst by alloying it with Zn for the dry reforming of methane
J. CO2 Util. Year: 2023 DOI:https://doi.org/10.1016/j.jcou.2023.102573
Authors: Velisoju, Virpurwala, Yerrayya, Bai, Davaasuren, Hassine, Yao, Lezcano, Kulkarni, Castaño
  • CHA
  • CO2
  • HCE
A holistic approach to include SiC and design the optimal extrudate catalyst for hydrogen production–reforming routes
Fuel Year: 2023 DOI:https://doi.org/10.1016/j.fuel.2023.128717
Authors: Alkadhem, Tavares, Realpe, Lezcano, Yudhanto, Subah, Manaças, Osinski, Lubineau, Castaño
  • REF
  • HCE
Post-Synthetic Surface Modification of Metal–Organic Frameworks and Their Potential Applications
Small Methods Year: 2023 DOI:https://doi.org/10.1002/smtd.202201413
Authors: Figueroa-Quintero, Villalgordo-Hernández, Delgado-Marín, Narciso, Velisoju, Castaño, Gascon, Ramos-Fernandez
  • OLG
  • CO2
  • CHA
  • HCE
Atypical stability of exsolved Ni-Fe alloy nanoparticles on double layered perovskite for CO2 dry reforming of methane
Appl. Catal. B: Environ. Year: 2023 DOI:https://doi.org/10.1016/j.apcatb.2023.122479
Authors: Yao, Cheng, Yerrayya, Ould-Chikh, Ramirez, Bai, Mohamed, Li, Shterk, Zheng, Gascon, Han, Bakr, Castaño
  • CHA
  • HCE
Elucidating the promoting role of Ca on PdZn/CeO2 catalyst for CO2 valorization to methanol
Fuel Year: 2023 DOI:https://doi.org/10.1016/j.fuel.2023.127927
Authors: Zaman, Ojelade, Alhumade, Mazumder, Mohamed, Castaño
  • CO2
  • HCE
Maximizing Active Fe Species in ZSM-5 Zeolite Using Organic-Template-Free Synthesis for Efficient Selective Methane Oxidation
J. Am. Chem. Soc. Year: 2023 DOI:https://doi.org/10.1021/jacs.2c13351
Authors: Cheng, Yao, Zheng, Wang, Emwas, Castaño, Ruiz-Martinez, Han
  • CHA
  • HCE
W2N-MXene composite anode catalyst for efficient microbial fuel cells using domestic wastewater
Chem. Eng. J. Year: 2023 DOI:https://doi.org/10.1016/j.cej.2023.141821
Authors: Kolubah, Mohamed, Ayach, Hari, Alshareef, Saikaly, Chae, Castaño
  • EPB
  • HCE
Leaching in Specific Facets of ZIF-67 and ZIF-L Zeolitic Imidazolate Frameworks During the CO2 Cycloaddition with Epichlorohydrin
Chem. Mater. Year: 2023 DOI:https://doi.org/10.1021/acs.chemmater.2c03374
Authors: Delgado-Marín, Rendón-Patiño, Velisoju, Kumar, Zambrano, Rueping, Gascon, Castaño, Narciso, Ramos-Fernandez
  • CO2
  • HCE
Co–TiO2 supported on reduced graphene oxide as a highly active and stable photocatalyst for hydrogen generation
Fuel Year: 2023 DOI:https://doi.org/10.1016/j.fuel.2022.127232
Authors: Moustafa, Velisoju, Mohamed, Obaid, Kolubah, Yao, Ghaffour, Castaño
  • EPB
  • HCE
Decreasing the coking and deactivation of a reforming Ni-Ce/Al2O3 catalyst with intraparticle SiC in hydrogen production routes
Fuel Year: 2023 DOI:https://doi.org/10.1016/j.fuel.2022.127058
Authors: Tavares, Mohamed, Kulkarni, Morlanes, Castaño
  • REF
  • HCE