Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Publications

Isolating the effect of Co and Ce on Ni–X–Y/Al2O3 bi- and trimetallic reforming catalysts for hydrogen generation

by Mohamed, Kulkarni, Velisoju, Zhang, Yerrayya, Bai, Kolubah, Yao, Morlanes, Castaño
Int. J. Hydrog. Energy Year: 2024 DOI: https://doi.org/10.1016/j.ijhydene.2023.10.257

Abstract

This work investigates the individual and combined promoting effects of ceria and cobalt on a nickel-based catalyst for steam reforming. First, the catalysts were synthesized using a fixed 20 wt% Ni content and variable Ce and Co, 0-10 wt% contents. We used a combined experimental (characterization and testing) and computational framework to assess the promoting role in catalytic activity and stability for nickel-alumina-based catalysts. The formation of Ni-Co alloy was approved by combining different characterization techniques. The Ni20Ce2Co10/Al catalyst exhibits superior conversion, H2 yield, and lifetime. The obtained catalytic activity is attributed to the presence of bare Co sites that reduces the Ni crystal size, enhances the accessibility of active sites, promotes the metal–support interaction, and facilitates C-C scission. In addition, the incorporation of Ce with low loading (2 wt %) to Ni-Co interface enhances the accessibility of oxygen vacancy, facilitates the reaction, prevents coke formation and maintains catalytic activity for prolonged lifetime. The simplicity and cost-effectiveness of this proposed catalyst make it an appealing option for scaling up.

Keywords

HCE REF