Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Publications

Sustainable Energy Production from Domestic Wastewater via Bioelectrochemical Reactors Using MXene Efficient Electrodes Decorated with Transition Metal Nanoparticles
J. Environ. Chem. Eng. Year: 2024 DOI:https://doi.org/10.1016/j.jece.2024.113793
Authors: Kolubah, Mohamed, Hedhili, Hassine, Díaz-Rúa, Drautz-Moses, Obaid, Ghaffour, Saikaly, Castaño
  • EPB
  • CRE
Multifunctional fluidized bed reactors for process intensification
Prog. Energy Combust. Sci. Year: 2024 DOI:https://doi.org/10.1016/j.pecs.2024.101176
Authors: Zapater, Kulkarni, Wery, Cui, Herguido, Menendez, Heynderickx, Van Geem, Gascon, Castaño
  • CRE
Coupling catalytic bed fluidization with impeller rotation for improved hydrodynamic characterization of Berty reactors
React. Chem. Eng. Year: 2024 DOI:https://doi.org/10.1039/D4RE00074A
Authors: Cui, Kulkarni, Abu-Naaj, Wagner, Berger-Karin, Weber, Nagy, Castaño
  • FCC
  • C2C
  • CRE
  • MKM
Enlarging the Three-Phase Boundary to Raise CO2/CH4 Conversions on Exsolved Ni–Fe Alloy Perovskite Catalysts by Minimal Rh Doping
ACS Catal. Year: 2024 DOI:https://doi.org/10.1021/acscatal.4c00151
Authors: Yao, Cheng, Bai, Davaasuren, Melinte, Morlanes, Cerrillo, Velisoju, Mohamed, Kolubah, Zheng, Han, Bakr, Gascon, Castaño
  • CRE
  • CHA
Catalytic conversion of crude oil to hydrogen by a one-step process via steam reforming
Int. J. Hydrog. Energy Year: 2024 DOI:https://doi.org/10.1016/j.ijhydene.2024.03.121
Authors: Albuali, Morlanes, Rendón-Patiño, Castaño, Gascon
  • CRE
  • O2H
  • REF
Shaping technical catalyst particles in a bottom-spray fluidized bed
Powder Tech. Year: 2024 DOI:https://doi.org/10.1016/j.powtec.2024.119602
Authors: Alkadhem, Mohamed, Kulkarni, Hoffmann, Zapater, Musteata, Tsotsas, Castaño
  • CRE
  • HCE
Regulating the crude oil–to–chemical process in a multizone fluidized bed reactor using unconventional catalyst formulations
Powder Tech. Year: 2024 DOI:https://doi.org/10.1016/j.powtec.2024.119573
Authors: Cui, Dikhtiarenko, Kulkarni, Shoinkhorova, Al Aslani, Alabdullah, Mazumder, Medina Flores, Alahmadi, Alfilfil, Morales-Osorio, Almajnouni, Gascon, Castaño
  • C2C
  • CRE
  • MKM
Ethylene Oligomerization: Unraveling the Roles of Ni Sites, Acid Sites, and Zeolite Pore Topology through Continuous and Pulsed Reactions
ChemCatChem Year: 2024 DOI:https://doi.org/10.1002/cctc.202301220
Authors: Abed, Mohamed, Hita, Velisoju, Morlanes, El Tall, Castaño
  • CRE
  • OLG
Evaluating performance of vortex-diode based hydrodynamic cavitation device scale and pressure drop using coumarin dosimetry
Chem. Eng. J. Year: 2024 DOI:https://doi.org/10.1016/j.cej.2024.148593
Authors: Sarvothaman, Kulkarni, Subburaj, Hariharan, Velisoju, Castaño, Guida, Prabhudharwadkar, Roberts
  • CRE
Thermochemical CO2 Reduction Catalyzed by Homometallic and Heterometallic Nanoparticles Generated from the Thermolysis of Supramolecularly Assembled Porous Metal-Adenine Precursors
Inorg. Chem. Year: 2023 DOI:https://doi.org/10.1021/acs.inorgchem.3c02830
Authors: Pascual-Colino, Virpurwala, Mena-Gutiérrez, Perez-Yanez, Luque, Beobide, Velisoju, Castaño, Castillo
  • CRE
  • CO2