Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Covers

Related Publications

Enlarging the Three-Phase Boundary to Raise CO2/CH4 Conversions on Exsolved Ni–Fe Alloy Perovskite Catalysts by Minimal Rh Doping

by Yao, Cheng, Bai, Davaasuren, Melinte, Morlanes, Cerrillo, Velisoju, Kolubah, Zheng, Han, Bakr, Gascon, Mohamed, Castaño
ACS Catal. Year: 2024 DOI: https://doi.org/10.1021/acscatal.4c00151

Abstract

Exsolved Ni–Fe alloy perovskite catalysts exhibit remarkable coking resistance during C–H and C–O activation. However, metallic utilization is typically incomplete, resulting in relatively low catalytic activity. Herein, we investigated minimal doping with Rh to boost the catalytic activity in the dry reforming of methane by promoting exsolution and enlargement of the three-phase boundary between the alloy, support, and reactants. The Rh influences the formation of the Ni–Fe alloy, as revealed by X-ray diffraction, and promotes the individual and collective CH4 and CO2 conversions, as revealed by packed bed reactor runs, temperature-programmed surface reactions, and in situ infrared spectroscopy. A minimal 0.21 wt % Rh addition enlarges the three-phase boundary while improving oxygen mobility and storage. The oxygen mobility is responsible for promoting CH4dissociation and dynamic removal of carbon-containing intermediates, such that the catalyst remains stable for over 100 h under both 1 and 14 bar.

Keywords

CRE CHA