Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Covers

Related Publications

Coupling catalytic bed fluidization with impeller rotation for improved hydrodynamic characterization of Berty reactors

by Cui, Kulkarni, Abu-Naaj, Wagner, Berger-Karin, Weber, Nagy, Castaño
React. Chem. Eng. Year: 2024 DOI: https://doi.org/10.1039/D4RE00074A

Abstract

We developed an integrated modeling framework to capture the gas–solid mixing patterns in internal circulating Berty reactors operating under batch fluidized mode. Our framework combines computational fluid dynamics for the gas phase with impeller rotation and computational particle fluid dynamics for solid fluidization in the catalyst basket. We proposed several key hydrodynamic indicators for the Berty-type reactor and compared the prediction results from the integrated simulation strategy with previous settings without considering the actual bed fluidization. Deviations in bed velocity, gas–solid contact time, and recirculation rate underscored the necessity of employing accurate hydrodynamic characteristics when designing Berty-type reactors. The consistent impeller relationships under various fluidization conditions suggested that the hydrodynamics in internal circulating Berty reactors are predominantly influenced by impeller rotation, irrespective of bed status. In this context, we introduced a fluidized bed expansion correlation to the impeller relationship, offering a more reliable hydrodynamic explanation for the Berty fluidized bed reactor in batch mode. This can also serve as a design foundation for internal recycling reactors.

Keywords

FCC C2C CRE MKM