Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Publications

Shaping technical catalyst particles in a bottom-spray fluidized bed

by Alkadhem, Mohamed, Kulkarni, Hoffmann, Zapater, Musteata, Tsotsas, Castaño
Powder Tech. Year: 2024 DOI: https://doi.org/10.1016/j.powtec.2024.119602

Abstract

This work aims to elucidate the particle growth mechanism during agglomeration using a bottom-spray fluidized bed process to produce technical catalysts. The influences of the fundamental operating parameters of the granulation process were investigated through (i) experiments in a newly designed small-scale bottom-spray fluidized bed reactor, (ii) morphological characterization of the catalytic particles produced, (iii) dimensionless number analysis, and (iv) principal component analysis. These results could define the growth stage as dust formation, seed formation, agglomeration, and dust integration or layering. The particle growth mechanism results from the complex interplay of several effects and forces (mass transfer, viscous force, inertial force, surface tension, and gravity), and the prevailing growth stage can be linked with the Weber (We) and capillary (Ca) numbers (i.e., low values of We = 5.7 and Ca = 1.4 leads to layering growth and high values of We = 19.1 and Ca = 7.1 results in dust formation).

Keywords

CRE HCE