Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Covers

Related Publications

Enhancement of Pyrolysis Gasoline Hydrogenation over Pd-promoted Ni/SiO2-Al2O3 Catalysts

by Castaño, Pawelec, Fierro, Arandes, Bilbao
Fuel Year: 2007

Abstract

Pyrolysis gasoline upgrading by hydrogenation and ring opening was investigated over highly loaded Ni catalysts supported on amorphous silica–alumina and incorporating promoters as Pd, seeking a higher aromatic reduction of this feedstock in order to meet stringent fuel regulations. The effect of Ni loading and Pd component on the activity of those systems was evaluated in a fixed bed reactor under the following operating conditions: T = 573 and 673 K, H2:PyGas molar ratio = 10, P = 5.0 MPa, WHSV = 4 h−1. The catalyst properties, measured by several characterization techniques (ICP-AES, XRD, N2 adsorption–desorption isotherms, TPR, H2-TPD, CO chemisorption, XPS, FTIR spectroscopy of adsorbed pyridine and NH3-TPD), were related to their catalytic activity and selectivity. Interestingly, the increase in Ni loading from 24.4 to 33.2 Ni wt.% has a negative effect on both hydrogenation and ring opening activities, as it causes a drop in the BET surface area and a decrease in metal-support interaction, with a negative bearing on catalyst stability. On the other hand, the addition of Pd has a positive effect for hydrogenation, linked with the higher electronegativity of Pd0 species compared to those of Ni0, as well as with a greater stability of Pd-promoted catalysts during on-stream conditions. A linear correlation has been found between the total amount of desorbed H2, as determined from H2-TPD experiments on freshly reduced catalysts, and the initial turnover frequency.

Keywords

HPC W2C HCE