Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Covers

Related Publications

Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols

by Albo, Vallejo, Beobide, Castillo, Castaño, Irabien
ChemSusChem Year: 2017

Extra Information

Highly Cited Paper and Hot Paper according to Essential Science Indicators.

Abstract

The electrocatalytic reduction of CO2 has been investigated using four Cu‐based metal–organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST‐1 metal–organic framework (MOF), [Cu3(μ6‐C9H3O6)2]n; (2) CuAdeAce MOF, [Cu3(μ3‐C5H4N5)2]n; (3) CuDTA mesoporous metal–organic aerogel (MOA), [Cu(μ‐C2H2N2S2)]n; and (4) CuZnDTA MOA, [Cu0.6Zn0.4(μ‐C2H2N2S2)]n. The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO2 conversion at HKUST‐1‐, CuAdeAce‐, CuDTA‐, and CuZnDTA‐based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm−2, an electrolyte‐flow/area ratio of 3 mL min cm−2, and a gas‐flow/area ratio of 20 mL min cm−2. We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST‐1‐ and CuZnDTA‐based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively.

Keywords

EPB HCE