Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Publications

Atypical stability of exsolved Ni-Fe alloy nanoparticles on double layered perovskite for CO2 dry reforming of methane

by Yao, Cheng, Yerrayya, Ould-Chikh, Ramirez, Bai, Mohamed, Li, Shterk, Zheng, Gascon, Han, Bakr, Castaño
Appl. Catal. B: Environ. Year: 2023 DOI: https://doi.org/10.1016/j.apcatb.2023.122479

Abstract

Dry reforming of methane simultaneously achieves several sustainability goals: valorizing methane-activating carbon dioxide while producing syngas. The catalyst has an enormous influence on the process viability by controlling activity, selectivity, and stability. A catalyst with uniform-sized Ni-Fe alloy nanoparticles anchored into PrBaMn1.6Ni0.3Fe0.1O5+δ double-layered perovskite is assembled via a facile one-step reduction strategy. Our method attains more exsolved Ni nanoparticles (94 %) than the common conditions. The exsolved Ni0.15Fe0.05 catalyst shows exceptional stability in 260 h tests at 800 °C, with one of the slowest coke formation rates compared with the state-of-the-art catalysts. Besides, no deactivation was observed during 40 h operation at more demanding and coking conditions (14 bar) where this process is more likely to operate industrially. Via experimental characterizations and computational calculations, the stability of the robust exsolved Ni-Fe catalyst is demonstrated by its unique balance of adsorbed species, which inhibits coking.

Keywords

CHA HCE