Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Covers

Related Publications

A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies

by Yang, Mohamed, Park, Obaid, Al-Qaradawi, Castaño, Chon, Chae
Bioresour. Technol. Year: 2021 DOI: https://doi.org/10.1016/j.biortech.2020.124363

Abstract

Microbial electrolysis cell (MEC) technology is a promising bioelectrochemical hydrogen production technology that utilizes anodic bio-catalytic oxidation and cathodic reduction processes. MECs require a lower external energy input than water electrolysis; however, as they also require the application of external power sources, this inevitably renders MEC systems a less sustainable option. This issue is the main obstacle hindering the practical application of MECs. Therefore, this review aims to introduce a self-sustainable MEC technology by combining conventional MECs with advanced carbon–neutral technologies, such as solar-, microbial-, osmotic-, and thermoelectric-powers (and their combinations). Moreover, new approaches to overcome the thermodynamic barriers and attain self-sustaining MECs are discussed in detail, thereby providing a working principle, current challenges, and future perspective in the field. This review provides comprehensive insights into reliable hydrogen production as well as the latest trends towards self-sustainable MECs for practical application.

Keywords

EPB HCE CRE