​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways


    Problem Statement

    Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

    We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

    HPC

    Goals

    • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
    • Explore novel renewable and waste resources to obtain chemicals and fuels
    • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
    • Analyze process dynamics and kinetics

    Related People

    Related Publications

    Aromatics Reduction of Pyrolysis Gasoline (PyGas) over HY-Supported Transition Metal Catalysts
    Appl. Catal. A: Gen. Year: 2006
    Authors: Castaño, Pawelec, Fierro, Arandes, Bilbao
    • HPC
    • HCE
    • W2C