Heterogeneous catalyst engineering ⇒ from stable and deactivation resistant to viable technical catalyst

Problem statement

Advances in heterogeneous catalyst “structure” are driven to improve their “function” or performance, i.e., activity, selectivity, and stability. Cooperative research is required to understand the structure and function relationships: developing new synthesis protocols for heterogeneous catalysts with unique surface properties, defined porosity, identification and understanding of catalytically active sites, reaction mechanisms, and finally, prediction and analysis of the processes using various computational tools.

Our group focuses on developing new catalyst formulations using innovative synthesis routes for various important heterogeneous catalysts. That includes thermal, electro, and bio-electro catalysis.

The active phase cannot be used directly in its final application or reactor for various reasons, including poor mechanical resistance, heat or mass transport, and fluidization features. We must mix the active phase with other ingredients in a matrix of binder and filler, while we shape it into a technical catalyst. We investigate new synthetic protocols for technical catalysis using spray drying and fluidized beds to cover the whole range of sizes. At the same time, we incorporate additional (unconventional) ingredients such as SiC to improve some features even further.

Goals

  • Technical catalyst I ⇒ spray drying and extrusion
  • Technical catalyst II ⇒ spray fluidized bed reactor
  • Technical catalyst III ⇒ electrospinning
  • Zeolite catalysts ⇒ with defined structure/porosity
  • Multi-metal (high entropy) alloy catalysts
  • MXene catalysts ⇒ single and multi-dimensional
  • Perovskite catalysts
  • Metal-organic framework (MOFs) catalysts
  • Supported metal/metal-oxide catalysts
  • Aerogel catalyst

Related People

Related Covers

Related Publications

Engineering Metal-MOF Interfaces for Selective CO₂ Hydrogenation to Methanol

by Ramos-Fernandez, Velisoju, Gascon, Castaño
Chem. Eur. J. Year: 2025 DOI: https://doi.org/10.1002/chem.202403709

Abstract

The hydrogenation of CO₂ to methanol is a promising pathway toward sustainable fuel production and carbon recycling. A key factor in the efficiency of this process lies in the interaction between the metal catalyst and its support. Metal-Organic Frameworks (MOFs) have emerged as highly effective platforms due to their tunable structures, large surface areas, and ability to form stable interfaces with single–atom metals or metal nanoparticles. These metal-MOF interfaces are crucial for stabilizing active sites, preventing sintering, and enhancing catalytic performance. In this concept paper, we explore the role of these interfaces in promoting CO₂ hydrogenation, focusing on Cu−Zn, Cu−Zr, and Zn−Zr interfaces. The formation of strong interactions between metal sites and MOF nodes enables precise control over the dispersion and electronic environment of the active species, significantly improving methanol selectivity and long-term stability. By analyzing recent advancements in MOF-supported catalysts, this work highlights the concept of engineered metal-MOF interfaces to drive the development of next-generation catalysts for efficient methanol synthesis from CO₂.

Keywords

HCE CO2