​​

Controlling the selectivity–stability tradeoff in zeolite catalysis: oligomerization–alkylation, cracking, and methanol-to-hydrocarbons 


    Problem Statement

    Olefins and aromatics are commodity chemicals used in producing plastics (in the petrochemical industry), lubricants, plasticizers, and surfactants, among other products. However, there is an imbalance between their production and demand, which reactions like oligomerization, alkylation, and cracking over zeolites could help address. At the same time, zeolites serve as excellent catalysts for converting methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). These processes aim to produce light hydrocarbons such as propylene or to convert ethylene into higher-value alpha-olefins, aromatic hydrocarbons (BTX), and jet fuel.


    Our focus in this project is to synthesize, modify, and develop new catalysts with engineered porosity at multiple scales: from hierarchical and hollow zeolites to catalytic particles, bodies, or technical catalysts intended for implementation. Additionally, we incorporate various metals (e.g., Ni, Cr, Zn) to influence the selectivity toward the desired products.

    We utilize various reactors, including forced dynamic, operando, high-throughput packed-bed, and batch reactors.

    OLG-O2H

    Goals

    • Control the catalyst structure to balance selectivity and stability.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Spectro-kinetics of the methanol to hydrocarbons reaction combining online product analysis with UV–vis and FTIR spectroscopies throughout the space time evolution

    by Valecillos, Vicente, Gayubo, Aguayo, Castaño
    J. Catal. Year: 2022 DOI: https://doi.org/10.1016/j.jcat.2022.02.021

    Abstract

    The well-studied methanol to hydrocarbons reaction over a ZSM-5 zeolite catalyst has been used to develop a spectro-kinetic approach to obtain an overall reaction mechanism involving both retained species and gas-phase products. We combined two in situ spectroscopic techniques (ultraviolet–visible and Fourier-transform infrared spectroscopies) with online product analysis to obtain the time- and space time-resolved evolution of the entire reaction media. A ZSM-5 zeolite catalyst was tested in two commercial spectroscopic cells at 400 °C using different space times (different inlet flow rates). Specifically, our work focusses on the effect of the space time (key parameter in any kinetic study) and how to tune other parameters such as partial pressure of methanol to resolve, from the spectroscopic and gas-phase points of view, the mechanisms of reaction and deactivation. Our approach reinforces the previous interpretation of these two combined networks in the selected reaction, thus, proving that the spectro-kinetic approach is a robust methodology to simultaneously build overall reaction and deactivation mechanisms.

    Keywords

    O2H MKM CRE