​​

Controlling selectivity and stability of zeolite catalysts for methanol to hydrocarbons and ethylene oligomerization


    Problem Statement

    Olefins are commodity chemicals with applications in the production of plastics (petrochemical industry), lubricants, plasticizers, and surfactants, among many others. However, there is an imbalance between their production and demand, which oligomerization-cracking reactions over zeolites could solve. At the same time, zeolites are excellent catalysts for methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). The processes aim to produce light hydrocarbons like propylene or convert ethylene into higher-value a-olefins, aromatic hydrocarbons (BTX), and jet fuel.

    Our focus in this project is to modify, synthesize, and develop novel materials of different porosity (engineered at the multiscale): from hierarchical zeolites, nano zeolites, and hollow zeolites to catalytic particles, bodies, spray-dried, and extrudates with tuned properties. Additionally, we incorporate different metals (i.e., Ni, Cr, Zn) to adjust the selectivity of desired products.

    We use various reactors, such as operando or high-throughput packed-bed and batch reactors.

    OLG-O2H

    Goals

    • Control structure–selectivity: Tune zeolite porosity and acidity to maximize propylene and α-olefin yields.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Reaction Network of the Chloromethane Conversion into Light Olefins using a HZSM-5 Zeolite Catalyst

    by Gamero, Valle, Castaño, Aguayo, Bilbao
    J. Ind. Eng. Chem. Year: 2018

    Abstract

    The second step of chlorine-mediated methane valorization into hydrocarbons has been investigated using a HZSM-5 zeolite catalyst. A parametric study has enabled to set the reaction network, which is dominated by the dual cycle mechanism and secondary reactions of light olefins. This network explains the formation of methane, light olefins, C5+ aliphatics, paraffins, aromatics and coke. Under the optimal conditions, the light olefin selectivity is >70%, of which >40% corresponds to propylene. Coke is originated in the zeolite micropores and then grows within the matrix meso- and macropores.

    Keywords

    O2H MKM