​​

Controlling the selectivity–stability tradeoff in zeolite catalysis: oligomerization–alkylation, cracking, and methanol-to-hydrocarbons 


    Problem Statement

    Olefins and aromatics are commodity chemicals used in producing plastics (in the petrochemical industry), lubricants, plasticizers, and surfactants, among other products. However, there is an imbalance between their production and demand, which reactions like oligomerization, alkylation, and cracking over zeolites could help address. At the same time, zeolites serve as excellent catalysts for converting methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). These processes aim to produce light hydrocarbons such as propylene or to convert ethylene into higher-value alpha-olefins, aromatic hydrocarbons (BTX), and jet fuel.


    Our focus in this project is to synthesize, modify, and develop new catalysts with engineered porosity at multiple scales: from hierarchical and hollow zeolites to catalytic particles, bodies, or technical catalysts intended for implementation. Additionally, we incorporate various metals (e.g., Ni, Cr, Zn) to influence the selectivity toward the desired products.

    We utilize various reactors, including forced dynamic, operando, high-throughput packed-bed, and batch reactors.

    OLG-O2H

    Goals

    • Control the catalyst structure to balance selectivity and stability.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Nature and Location of Carbonaceous Species in a Composite HZSM-5 Zeolite Catalyst during the Conversion of Dimethyl Ether into Light Olefins

    by Ibanez, Perez-Uriarte, Sanchez-Contador, Cordero-Lanzac, Aguayo, Bilbao, Castaño
    Catalysts Year: 2017

    Extra Information

    Open Access.

    Abstract

    The deactivation of a composite catalyst based on HZSM-5 zeolite (agglomerated in a matrix using boehmite as a binder) has been studied during the transformation of dimethyl ether into light olefins. The location of the trapped/retained species (on the zeolite or on the matrix) has been analyzed by comparing the properties of the fresh and deactivated catalyst after runs at different temperatures, while the nature of those species has been studied using different spectroscopic and thermogravimetric techniques. The reaction occurs on the strongest acid sites of the zeolite micropores through olefins and alkyl-benzenes as intermediates. These species also condensate into bulkier structures (polyaromatics named as coke), particularly at higher temperatures and within the meso- and macropores of the matrix. The critical roles of the matrix and water in the reaction medium have been proved: both attenuating the effect of coke deposition.