​​

Controlling the selectivity–stability tradeoff in zeolite catalysis: oligomerization–alkylation, cracking, and methanol-to-hydrocarbons 


    Problem Statement

    Olefins and aromatics are commodity chemicals used in producing plastics (in the petrochemical industry), lubricants, plasticizers, and surfactants, among other products. However, there is an imbalance between their production and demand, which reactions like oligomerization, alkylation, and cracking over zeolites could help address. At the same time, zeolites serve as excellent catalysts for converting methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). These processes aim to produce light hydrocarbons such as propylene or to convert ethylene into higher-value alpha-olefins, aromatic hydrocarbons (BTX), and jet fuel.


    Our focus in this project is to synthesize, modify, and develop new catalysts with engineered porosity at multiple scales: from hierarchical and hollow zeolites to catalytic particles, bodies, or technical catalysts intended for implementation. Additionally, we incorporate various metals (e.g., Ni, Cr, Zn) to influence the selectivity toward the desired products.

    We utilize various reactors, including forced dynamic, operando, high-throughput packed-bed, and batch reactors.

    OLG-O2H

    Goals

    • Control the catalyst structure to balance selectivity and stability.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Dual-cycle-based lumped kinetic model for methanol-to-aromatics (MTA) reaction over H-ZSM-5 zeolites of different Si/Al ratio

    by Vicente, Aguayo, Castaño, Gayubo
    Fuel Year: 2024 DOI: https://doi.org/10.1016/j.fuel.2023.130704

    Abstract

    In this work we developed a 7-lump kinetic model for the methanol-to-aromatics (MTA) reaction based on the dual-cycle mechanism, with consideration of deactivation of the catalyst by coke formation and applicable to H-ZSM-5 zeolite-based catalysts of different acidity. The model developed is suitable to be implemented at an industrial scale, as the intrinsic kinetic aspect fits the experimental data in a wide range of operating conditions. Moreover, the model is validated for two catalysts (prepared from two H-ZSM-5 zeolites of Si/Al ratio = 15 and 40), and considers a combined formation of coke from both unreacted oxygenates and reaction products (specifically, aromatics and light olefins). The final model comprises 10 reaction steps, and considers the effect of water co-feeding. The kinetic parameters of best fitting are obtained in the simultaneous fitting of the zero time and the deactivation kinetics. We compared the kinetic parameters of the best-fitting model for the two catalysts and related the differences obtained between both sets of parameters to catalyst properties.

    Keywords

    MKM O2H