​​

Controlling the selectivity–stability tradeoff in zeolite catalysis: oligomerization–alkylation, cracking, and methanol-to-hydrocarbons 


    Problem Statement

    Olefins and aromatics are commodity chemicals used in producing plastics (in the petrochemical industry), lubricants, plasticizers, and surfactants, among other products. However, there is an imbalance between their production and demand, which reactions like oligomerization, alkylation, and cracking over zeolites could help address. At the same time, zeolites serve as excellent catalysts for converting methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). These processes aim to produce light hydrocarbons such as propylene or to convert ethylene into higher-value alpha-olefins, aromatic hydrocarbons (BTX), and jet fuel.


    Our focus in this project is to synthesize, modify, and develop new catalysts with engineered porosity at multiple scales: from hierarchical and hollow zeolites to catalytic particles, bodies, or technical catalysts intended for implementation. Additionally, we incorporate various metals (e.g., Ni, Cr, Zn) to influence the selectivity toward the desired products.

    We utilize various reactors, including forced dynamic, operando, high-throughput packed-bed, and batch reactors.

    OLG-O2H

    Goals

    • Control the catalyst structure to balance selectivity and stability.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Dual Coke Deactivation Pathways during the Catalytic Cracking of Raw Bio-Oil and Vacuum Gasoil in FCC Conditions

    by Ibarra, Veloso, Bilbao, Arandes, Castaño
    Appl. Catal. B: Environ. Year: 2016

    Extra Information

    Open Access.

    Abstract

    Coke deposition pathways have been studied during the fluid catalytic cracking of bio-oil, vacuum gasoil (VGO) and a blend of the previous two (80 wt% VGO and 20 wt% bio-oil), under realistic riser conditions of the fluid catalytic cracking (FCC) unit, using a commercial catalyst at 500 °C and contact times of 1.5–10 s. Amount and composition of soluble and insoluble coke in dichloromethane have been analyzed using a set of techniques (TPO, FTIR, 13C NMR, XPS, Raman, GC–MS and MALDI-TOF MS, among others). The relationship of coke deposition with its composition and the reaction medium has allowed us to set two pathways of coke formation: (i) heavy hydrocarbon pathway tend to form ordered polycondensed aromatic nanostructures; whereas (ii) oxygenate pathway tend to form a lighter fraction of coke containing oxygen, less ordered and more aliphatic coke. A synergy between the two pathways have been verified due to the lower coke deposition of the blend compared to the individual components, and this has been explained in terms of (i) attenuation of the heavy hydrocarbon pathway caused by the steam contained or originated from the bio-oil, and (ii) the hydride transfer from hydrocarbons to the precursors of the oxygenate pathway.

    Keywords

    O2H FCC W2C MKM