​​

Controlling the selectivity–stability tradeoff in zeolite catalysis: oligomerization–alkylation, cracking, and methanol-to-hydrocarbons 


    Problem Statement

    Olefins and aromatics are commodity chemicals used in producing plastics (in the petrochemical industry), lubricants, plasticizers, and surfactants, among other products. However, there is an imbalance between their production and demand, which reactions like oligomerization, alkylation, and cracking over zeolites could help address. At the same time, zeolites serve as excellent catalysts for converting methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). These processes aim to produce light hydrocarbons such as propylene or to convert ethylene into higher-value alpha-olefins, aromatic hydrocarbons (BTX), and jet fuel.


    Our focus in this project is to synthesize, modify, and develop new catalysts with engineered porosity at multiple scales: from hierarchical and hollow zeolites to catalytic particles, bodies, or technical catalysts intended for implementation. Additionally, we incorporate various metals (e.g., Ni, Cr, Zn) to influence the selectivity toward the desired products.

    We utilize various reactors, including forced dynamic, operando, high-throughput packed-bed, and batch reactors.

    OLG-O2H

    Goals

    • Control the catalyst structure to balance selectivity and stability.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Deactivating Species in the Transformation of Crude Bio-Oil with Methanol into Hydrocarbons on a HZSM-5 Catalyst

    by Valle, Castaño, Olazar, Bilbao, Gayubo
    J. Catal. Year: 2012

    Abstract

    A study has been carried out by using different techniques (TPO, FTIR, Raman, 13C NMR, GC/MS of the coke dissolved in CH2Cl2) on the nature of the coke deposited on a HZSM-5 catalyst modified with Ni in the transformation of the crude bio-oil obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust) into hydrocarbons. The reaction system has two steps in-line. In the first one, the components of crude bio-oil derived from the pyrolysis of biomass lignin are polymerized at 400 °C. In the second one, the remaining volatile oxygenates are transformed into hydrocarbons in a fluidized bed catalytic reactor at 450 °C. The reaction has been carried out with different bio-oil/methanol mass ratios in the feed (from 100/0 to 0/100). Co-feeding methanol significantly attenuates coke deposition, and the nature of the coke components varies according to the bio-oil/methanol ratio in the feed. When bio-oil is co-fed, the coke deposited on the catalyst has a significant content of oxygenates and oxo-aromatics and consists of two fractions, identified by temperature programmed oxidation, corresponding to external and internal coke in the zeolite crystals. The fraction of external coke is soluble in CH2Cl2, with a high content of oxygenates and oxo-aromatics, and is generated by polymerization of products derived from biomass lignin pyrolysis activated by the zeolite acid sites. The fraction of coke retained within the zeolite crystals is partially insoluble and is formed by several routes: from the intermediates in the transformation of both methanol and bio-oil oxygenates into hydrocarbons; by evolution of the other coke fraction; from the hydrocarbons (with high aromatics content) in the reaction medium.

    Keywords

    O2H FCC W2C ANW