​​

Controlling the selectivity–stability tradeoff in zeolite catalysis: oligomerization–alkylation, cracking, and methanol-to-hydrocarbons 


    Problem Statement

    Olefins and aromatics are commodity chemicals used in producing plastics (in the petrochemical industry), lubricants, plasticizers, and surfactants, among other products. However, there is an imbalance between their production and demand, which reactions like oligomerization, alkylation, and cracking over zeolites could help address. At the same time, zeolites serve as excellent catalysts for converting methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). These processes aim to produce light hydrocarbons such as propylene or to convert ethylene into higher-value alpha-olefins, aromatic hydrocarbons (BTX), and jet fuel.


    Our focus in this project is to synthesize, modify, and develop new catalysts with engineered porosity at multiple scales: from hierarchical and hollow zeolites to catalytic particles, bodies, or technical catalysts intended for implementation. Additionally, we incorporate various metals (e.g., Ni, Cr, Zn) to influence the selectivity toward the desired products.

    We utilize various reactors, including forced dynamic, operando, high-throughput packed-bed, and batch reactors.

    OLG-O2H

    Goals

    • Control the catalyst structure to balance selectivity and stability.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    Comprehensive Approach for Designing Different Configurations of Isothermal Reactors with Fast Catalyst Deactivation

    by Cordero-Lanzac, Aguayo, Gayubo, Castaño, Bilbao
    Chem. Eng. J. Year: 2020

    Abstract

    A methodology for simulating the performance of different reactor configurations for processes with complex reaction networks and fast catalyst deactivation has been proposed. These reaction configurations are: packed bed, moving bed and fluidized bed reactors with and without catalyst circulation. From kinetic parameters collected in a packed bed reactor and a rigorous consideration of the activity, modifications in the convection-dispersion-reaction equation have led to the prediction of the catalyst performance in each reactor configuration. The circulating fluidized bed reactor has been simulated with an original model of parallel compartments, which allows for determining its performance in the steady state from the evolution of the transitory period. The methodology has been used for simulating the dynamics of SAPO-34 fast deactivation during the methanol-to-olefins (MTO) process. For each reactor configuration, concentration profiles and their evolution with time have been simulated, thus predicting the effect of reaction conditions and water content (formed and/or co-fed) on the activity profile or the activity distribution function (in the case of circulating fluidized bed reactor). The olefin yield and distribution have also been compared for each reactor configuration.

    Keywords

    O2H FCC CRE MKM