Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Publications

Towards the Electrochemical Conversion of Carbon Dioxide into Methanol

by Albo, Alvarez-Guerra, Castaño, Irabien
Green Chem. Year: 2015

Extra Information

Highly Cited Paper according to Essential Science Indicators.

Abstract

Various strategies have been proposed to date in order to mitigate the concentration of CO2 in the atmosphere, such as the separation, storage, and utilization of this gas. Among the available technologies, the electrochemical valorisation of CO2 appears to be an innovative technology, in which electrical energy is supplied to establish a potential between two electrodes, allowing CO2 to be transformed into value-added chemicals under mild conditions. It provides a method to recycle CO2 (in a carbon neutral cycle) and, at the same time, a way to chemically store the excess of renewable energy from intermittent sources, thus reducing our dependence on fossil fuels. Among the useful products that can be obtained, methanol is particularly interesting as a platform chemical, and it has gained renewed and growing attention in the research community. Accomplishments to date in the electroreduction of CO2 to methanol have been encouraging, although substantial advances are still needed for it to become a profitable technology able to shift society to renewable energy sources. This review presents a unified discussion of the significant work that has been published in the field of electrocatalytic reduction of CO2 to methanol. It emphasizes the aspects related to process design at different levels: cathode materials, reaction media, design of electrochemical cells, as well as working conditions. It then extends the discussion to the important conclusions from different electrocatalytic routes, and recommendations for future directions to develop a catalytic system that will convert CO2 to methanol at high process efficiencies.

Keywords

EPB HCE CRE