Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors


Problem Statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Objectives

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Covers

Related Publications

Engineering Catalysts at the Multiscale: Past, Present, and Future of Catalyst Manufacturing and Shaping Processes

by Alkadhem, Perez-Botella, Pietsch-Braune, Mohamed, Grande, Heinrich, Castaño
ChemCatChem Year: 2026 DOI: https://doi.org/10.1002/cctc.202501109

Abstract

Catalyst shaping is pivotal in optimizing catalytic performance across industrial chemical processes. The engineering of catalysts at multiple scales, ranging from nano to macro, has considerably evolved over the years, driven by advancements in shaping technology. We explore the progression of catalyst shaping, beginning with traditional methods, such as pelletizing and granulation, and advancing to modern techniques, including extrusion, spray-drying, fluidized-bed processes, and additive manufacturing (AM). This work emphasizes shaping technology tailored to specific reactor types, such as fixed-bed (up to structured catalyst) and fluidized-bed reactors. We highlight critical parameters to optimize and control catalyst properties and their direct influence on enhancing catalyst durability, activity, and selectivity. Advances in computational modeling, including multiscale simulations and machine learning-driven design, have further revolutionized catalyst shaping by enabling precise control and accelerating innovation. This review offers a comprehensive perspective on the future of multiscale catalyst shaping and underscores its potential to drive enhanced catalytic performance and sustainable chemical processes by analyzing historical developments, current trends, and emerging technology.

Keywords

CRE HCE