Wasteomics ⇒ a workflow to analyze complex reaction environments, waste, and realistic feeds conversions



Problem statement

In most heterogeneous catalytic processes, the reactive environment contains a mixture of reactants, intermediates, and products, and some adsorbed-trapped on the catalytic surface and elsewhere. Thus, most reacting environments in catalysis are complex, involve several phases (multiphase), and comprise unstable species or are challenging to analyze. To make things worse, some of these species have (auto-)catalytic or deactivating nature on the kinetics of the surrounding ones.

A typical practice in catalysis is using model molecules or surrogates to deepen into the mechanistic pathways, microkinetics, spectroscopy, etc. Conversely, analytical techniques keep evolving, becoming more precise but always targeting a specific fraction or type of species. That is to say, there is only one technique that solves all.

We aim to bridge the fundamental research performed in our group and outside using model molecules with a powerful analytical multi-technique approach to analyze the entire reaction media. The -omics fields inspire us to reflect on the collective characterization and quantification of pools of molecules that translate into the structure, function, and dynamics involved. We apply our approach to hydrocarbon transformations and green-sustainable feedstock (i.e., waste plastics, sewage sludge, biomass, algae, and seaweed). We develop multi-technique analytical protocols for the complete chemical molecular-level description of complex mixtures.

Goals

  • Analytical workflow ⇒ multi-analytical technique integration
  • Wasteometrics I ⇒ quantitative- and molecular-level analysis
  • Wasteometrics II ⇒ data mining and processing
  • Wasteomics ⇒ reaction networks and kinetic modeling

Related People

Related Covers

Related Publications

Profiling the trapped and deactivating species on HZSM-5 zeolite during 1-butene oligomerization

by Izaddoust, Hita, Kekalainen, Valecillos, Janis, Castaño, Epelde
Fuel Process. Technol. Year: 2025 DOI: https://doi.org/10.1016/j.fuproc.2025.108297

Abstract

The transformation of 1-butene into valuable fuels using HZSM-5 zeolite catalysts is significantly hindered by deactivation caused by deposited species and coke formation. This work delves into the entrapment, formation, and growth of these species during 1-butene oligomerization at 275–325 °C, 1.5–40 bar, and space-times of 2–6 gcat h molC−1. We have employed an extensive characterization of the used catalysts, integrating conventional techniques with high-resolution mass spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, FT-ICR MS). This advanced technique provides a detailed molecular-level analysis of these species. Our findings reveal that higher pressures promote oligomerization, resulting in an increased accumulation of trapped oligomer species. Conversely, higher temperatures facilitate the cracking of these oligomers into lighter fractions or their further conversion into coke molecules through condensation reactions. This dual behavior underscores the complex interplay between temperature and pressure in influencing the deactivation pathways. By understanding the overall reaction mechanism and the formation and growth patterns of trapped and deactivating species, we can develop strategies to mitigate catalyst deactivation, ultimately leading to more efficient industrial applications.

Keywords

OLG ANW