​​

Design and development of unconventional catalytic conversion processes using electrons, photons, and microorganisms

Problem statement

Our long-term commitment to sustainability and a circular carbon economy involves unconventional catalytic conversion processes. We study various processes assisted by electrons, photons, or microorganisms to produce biofuels, chemicals, electricity, or treated water. For example, bio-electro-chemical systems, including microbial fuel cells (MFCs), electrolysis cells (MECs), and photo-assisted cells (PA-MECs), are promising technologies to simultaneously produce renewable energy and clean wastewater using active microorganisms as biocatalysts.

Our work aims to synthesize multi-functional catalysts and reactors to enhance electrical conductivity, photo-efficiency, microbiological affinity, porosity, hydrophilicity, and surface area for carbonaceous electrodes. We work with materials such as graphene oxide, metallic nanoparticles, nitride and carbide basic materials, and MXenes.

We consider new platform technologies to produce renewable biofuel and chemicals and treat wastewater using the nanotechnology and reaction engineering approach as an innovative combination to increase the productivity of these processes.

Goals

  • Develop and scale up electro-photo-bio-catalyst and -reactors
  • Propose novel processes to clean wastewater and produce electricity, chemicals, and bio-hydrogen
  • Model and simulate fuel cell performance
  • Use innovative catalysts (anode and cathode material) and reactor designs to improve fuel cell performance
EPB2023

Related People

Related Publications

Photothermal Catalysts, Light and Heat Management: From Materials Design to Performance Evaluation

by Ramos-Fernandez, Rendón-Patiño, Mateo, Wang, Dally, Cui, Castaño, Gascon
Adv. Energy Mater. Year: 2025 DOI: https://doi.org/10.1002/aenm.202405272

Abstract

Photothermal catalysis, a frontier in heterogeneous catalysis, combines light-driven and thermally enhanced chemical reactions to optimize energy use and reaction efficiencies at catalytic active sites. By leveraging photothermal conversion, this approach links renewable energy sources with industrial chemical processes, offering significant potential for sustainable applications. This review categorizes photothermal catalysis into three types: light-driven thermocatalysis, thermally enhanced photocatalysis, and photo-thermo coupling catalysis. Each category is analyzed, emphasizing mechanisms, performance factors, and the role of advanced materials such as plasmonic nanoparticles, semiconductors, and hybrid composites in enhancing light absorption, thermal distribution, and catalytic stability. Key challenges include achieving uniform thermal and photonic energy distributions within catalytic reactors and developing accurate performance evaluation metrics. Applications such as CO₂ reduction, ammonia synthesis, and plastic upcycling highlight the environmental and industrial relevance of this technology. The review identifies limitations and suggests innovations in materials design and energy-storing mechanisms to enable continuous catalytic processes. Future directions emphasize photothermal catalysis's potential to transform sustainable energy systems and advance green chemical production. This synthesis aims to guide research and foster practical adoption of photothermal technologies at an industrial scale.

Keywords

CRE HCE EPB