​​

Design and development of unconventional catalytic conversion processes using electrons, photons, and microorganisms

Problem statement

Our long-term commitment to sustainability and a circular carbon economy involves unconventional catalytic conversion processes. We study various processes assisted by electrons, photons, or microorganisms to produce biofuels, chemicals, electricity, or treated water. For example, bio-electro-chemical systems, including microbial fuel cells (MFCs), electrolysis cells (MECs), and photo-assisted cells (PA-MECs), are promising technologies to simultaneously produce renewable energy and clean wastewater using active microorganisms as biocatalysts.

Our work aims to synthesize multi-functional catalysts and reactors to enhance electrical conductivity, photo-efficiency, microbiological affinity, porosity, hydrophilicity, and surface area for carbonaceous electrodes. We work with materials such as graphene oxide, metallic nanoparticles, nitride and carbide basic materials, and MXenes.

We consider new platform technologies to produce renewable biofuel and chemicals and treat wastewater using the nanotechnology and reaction engineering approach as an innovative combination to increase the productivity of these processes.

Goals

  • Develop and scale up electro-photo-bio-catalyst and -reactors
  • Propose novel processes to clean wastewater and produce electricity, chemicals, and bio-hydrogen
  • Model and simulate fuel cell performance
  • Use innovative catalysts (anode and cathode material) and reactor designs to improve fuel cell performance
EPB2023

Related People

Related Publications

Outstanding performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes

by Eisa, Park, Mohamed, Abdelkareem, Lee, Yang, Castaño, Chae
Energy Year: 2021

Abstract

Direct urea/hydrogen peroxide fuel cells (DUHP-FCs) can produce electrical energy by recycling urea-rich wastewater. This study expands the commerciality of DUHP-FC by removing precious metals from their design. Nickel nanorod/nickel foam (NNR/NF) was fabricated using hydrothermal treatment to be used as the anode, and Prussian blue coating was deposited by potentiostatic electrodeposition onto hydrophilic carbon felt at the cathode (PB/CF). The anode exhibited a 7-folds higher current density than bare NF at 0–2 M urea, and lower charge transfer resistance. The cathode reported a high H2O2 reduction current. In addition, fuel cell tests indicated current density dependency on H2O2 concentration and cell voltage dependency on KCl concentration. A competitive maximum power density of 10.6 mW cm−2 was achieved at 0.98 open circuit voltage and 45 mA cm−2 maximum current density, in 0.33 M urea vs 2 M KCl and 2 M H2O2, exclusively via diffusive mass transfer. These findings indicate the practical application of DUHP-FC on a large scale.

Keywords

EPB HCE