​​

Towards a feasible and stable thermocatalytic conversion of CO2 to methanol and E-fuels

Problem statement

Unarguably, CO2 is a crucial concern affecting climate change. To cope with or solve the issue, viable valorization strategies are required for efficient usage of CO2, allowing for a circular economy. We aim to convert CO2 into CO, methane, methanol, dimethyl ether, or E-fuels.

Our activities in CO2 conversion are related to (i) analyzing the stability of industrially relevant catalysts under realistic conditions and (ii) developing new catalytic materials based on Cu. In (i), we are developing reactors that augment the kinetic information: (a) in situ and operando spectroscopic reactors that work under (close to) working conditions to study structure-performance relationships, (b) periodic reactors with transient or variable conditions over time or space. In (ii), we work mainly with novel materials such as metal-organic frameworks (MOFs).

We guide the design of these catalysts based on stability and using density functional theory (DFT) and microkinetic modeling.

Goals

  • Develop advanced structure-function-deactivation relationships of industrially relevant catalysts
  • Analyze the effect of “activity modifiers,” such as sulfur species, aromatics, chlorine, etc., on the catalyst structure and performance
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
  • Synthesize new catalytic materials with enhanced stability and selectivity
  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
CO2-2023

Related People

Related Publications

Highly Dispersed Pd@ZIF-8 for Photo-Assisted Cross-Couplings and CO2 to Methanol: Activity and Selectivity Insights
Angewandte Chemie Year: 2024 DOI:https://doi.org/10.1002/anie.202409490
Authors: Velisoju, Ramos-Fernandez, Kancherla, Ahmad, Pal, Mohamed, Cerrillo, Meijerink, Cavallo, Rueping, Castaño
  • HCE
  • CO2
Microbial symbiotic electrobioconversion of carbon dioxide to biopolymer (poly (3-hydroxybutyrate)) via single-step microbial electrosynthesis cell
Chem. Eng. J. Year: 2024 DOI:https://doi.org/10.1016/j.cej.2024.156635
Authors: Le, Mohamed, Kim, Yoo, Eisa, Jadhav, Nguyen, Eam, Myung, Castaño, Chae
  • EPB
  • HCE
  • CO2
Microkinetic Modeling to Decode Catalytic Reactions and Empower Catalytic Design
ChemCatChem Year: 2024 DOI:https://doi.org/10.1002/cctc.202301720
Authors: Kulkarni, Lezcano, Velisoju, Realpe, Castaño
  • MKM
  • CO2
  • CHA
  • AMD
Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO2 hydrogenation catalyst
Nature Comm. Year: 2024 DOI:https://doi.org/10.1038/s41467-024-46388-4
Authors: Velisoju, Cerrillo, Ahmad, Yerrayya, Cheng, Yao, Zheng, Shekhah, Telalovic, Narciso, Cavallo, Eddaoudi, Ramos-Fernandez, Mohamed, Castaño
  • CO2
  • HCE
Thermochemical CO2 Reduction Catalyzed by Homometallic and Heterometallic Nanoparticles Generated from the Thermolysis of Supramolecularly Assembled Porous Metal-Adenine Precursors
Inorg. Chem. Year: 2023 DOI:https://doi.org/10.1021/acs.inorgchem.3c02830
Authors: Pascual-Colino, Virpurwala, Mena-Gutiérrez, Perez-Yanez, Luque, Beobide, Velisoju, Castaño, Castillo
  • CRE
  • CO2
Overcoming the kinetic and deactivation limitations of Ni catalyst by alloying it with Zn for the dry reforming of methane
J. CO2 Util. Year: 2023 DOI:https://doi.org/10.1016/j.jcou.2023.102573
Authors: Velisoju, Virpurwala, Yerrayya, Bai, Davaasuren, Hassine, Yao, Lezcano, Kulkarni, Castaño
  • CHA
  • CO2
  • HCE
Multi-technique operando methods and instruments for simultaneous assessment of thermal catalysis structure, performance, dynamics, and kinetics
Chem Catal. Year: 2023 DOI:https://doi.org/10.1016/j.checat.2023.100666
Authors: Velisoju, Kulkarni, Cui, Rabee, Paalanen, Rabeah, Maestri, Brückner, Ruiz-Martinez, Castaño
  • CO2
  • CHA
  • CRE
Post-Synthetic Surface Modification of Metal–Organic Frameworks and Their Potential Applications
Small Methods Year: 2023 DOI:https://doi.org/10.1002/smtd.202201413
Authors: Figueroa-Quintero, Villalgordo-Hernández, Delgado-Marín, Narciso, Velisoju, Castaño, Gascon, Ramos-Fernandez
  • OLG
  • CO2
  • CHA
  • HCE
Elucidating the promoting role of Ca on PdZn/CeO2 catalyst for CO2 valorization to methanol
Fuel Year: 2023 DOI:https://doi.org/10.1016/j.fuel.2023.127927
Authors: Zaman, Ojelade, Alhumade, Mazumder, Mohamed, Castaño
  • CO2
  • HCE
Leaching in Specific Facets of ZIF-67 and ZIF-L Zeolitic Imidazolate Frameworks During the CO2 Cycloaddition with Epichlorohydrin
Chem. Mater. Year: 2023 DOI:https://doi.org/10.1021/acs.chemmater.2c03374
Authors: Delgado-Marín, Rendón-Patiño, Velisoju, Kumar, Zambrano, Rueping, Gascon, Castaño, Narciso, Ramos-Fernandez
  • CO2
  • HCE