​​

Towards a feasible and stable thermocatalytic conversion of CO2 to methanol and E-fuels

Problem statement

Unarguably, CO2 is a crucial concern affecting climate change. To cope with or solve the issue, viable valorization strategies are required for efficient usage of CO2, allowing for a circular economy. We aim to convert CO2 into CO, methane, methanol, dimethyl ether, or E-fuels.

Our activities in CO2 conversion are related to (i) analyzing the stability of industrially relevant catalysts under realistic conditions and (ii) developing new catalytic materials based on Cu. In (i), we are developing reactors that augment the kinetic information: (a) in situ and operando spectroscopic reactors that work under (close to) working conditions to study structure-performance relationships, (b) periodic reactors with transient or variable conditions over time or space. In (ii), we work mainly with novel materials such as metal-organic frameworks (MOFs).

We guide the design of these catalysts based on stability and using density functional theory (DFT) and microkinetic modeling.

Goals

  • Develop advanced structure-function-deactivation relationships of industrially relevant catalysts
  • Analyze the effect of “activity modifiers,” such as sulfur species, aromatics, chlorine, etc., on the catalyst structure and performance
  • Improve the catalyst structure-function correlations using in-situ, operando, and dynamic techniques and reactors
  • Synthesize new catalytic materials with enhanced stability and selectivity
  • Develop a microkinetic-based modeling framework to analyze the catalyst performance
CO2-2023

Related People

Related Publications

Overcoming the kinetic and deactivation limitations of Ni catalyst by alloying it with Zn for the dry reforming of methane

by Velisoju, Virpurwala, Yerrayya, Bai, Davaasuren, Hassine, Yao, Lezcano, Kulkarni, Castaño
J. CO2 Util. Year: 2023 DOI: https://doi.org/10.1016/j.jcou.2023.102573

Abstract

Stimulated by the capacity of Zn to improve the adoption of CO2 and CH4, we doped a Ni-supported ZrO2 catalyst with Zn to enhance its performance and stability in the dry reforming of methane. We prepared a set of catalysts with different Ni:Zn:Zr proportions and conducted extensive ex situ and in situ characterizations to prove that a Ni–Zn alloy was formed at 750 °C under reductive conditions. Combining a tailored morphology of the alloy nanoparticles, strong metal–support (ZnO–ZrO2) interactions, and additional oxygen vacancies created by Zn inclusion resulted in an enhanced catalyst with 15% higher initial activity and higher stability for over 100 h on stream than Zn-free catalyst. Our experimental and modeling results demonstrated that the catalyst with adjusted Ni:Zn:Zr proportion improves the adsorption and reaction rates of CH4 and CO2 while extending its lifetime through enhanced coke precursor gasification compared to its Zn-free counterpart.

Keywords

CHA CO2 HCE