​​

Controlling selectivity and stability of zeolite catalysts for methanol to hydrocarbons and ethylene oligomerization


    Problem Statement

    Olefins are commodity chemicals with applications in the production of plastics (petrochemical industry), lubricants, plasticizers, and surfactants, among many others. However, there is an imbalance between their production and demand, which oligomerization-cracking reactions over zeolites could solve. At the same time, zeolites are excellent catalysts for methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). The processes aim to produce light hydrocarbons like propylene or convert ethylene into higher-value a-olefins, aromatic hydrocarbons (BTX), and jet fuel.

    Our focus in this project is to modify, synthesize, and develop novel materials of different porosity (engineered at the multiscale): from hierarchical zeolites, nano zeolites, and hollow zeolites to catalytic particles, bodies, spray-dried, and extrudates with tuned properties. Additionally, we incorporate different metals (i.e., Ni, Cr, Zn) to adjust the selectivity of desired products.

    We use various reactors, such as operando or high-throughput packed-bed and batch reactors.

    OLG-O2H

    Goals

    • Control structure–selectivity: Tune zeolite porosity and acidity to maximize propylene and α-olefin yields.
    • Metal modulation: Use Ni, Cr, Zn to bias reaction pathways and improve selectivity to target hydrocarbons.
    • Deactivation control: Reduce coke formation and extend catalyst lifetime with regeneration strategies.
    • Reactor optimization: Shape catalysts into bodies/extrudates and validate 100 h continuous stable operation.

    Related People

    Related Publications

    SAPO-18 and SAPO-34 Catalysts for Propylene Production from the Oligomerization-Cracking of Ethylene or 1-Butene

    by Epelde, Ibanez, Valecillos, Aguayo, Gayubo, Bilbao, Castaño
    Appl. Catal. A: Gen. Year: 2017

    Abstract

    The performance of SAPO-18 and SAPO-34 catalysts has been compared during the conversion of ethylene or 1-butene to propylene. This comparison has been made in terms of activity (conversion), selectivity and stability against coke deposition. The SAPOs were synthesized, agglomerated, calcined, characterized and tested in a fixed-bed reactor at 500 °C. The spent catalysts (after 5 h on stream) were characterized to assign the location and nature of coke. The results point to the higher activity and stability of SAPO-18 catalyst in the conversions of each reactant (ethylene or 1-butene), which has been explained on the basis of its acidity, pore topology and above all, the faster diffusion of aromatics causing deactivation. Thus, the SAPO-18 catalyst suffers slower coke deposition, while this coke is of lighter nature (more aliphatic and less aromatic). The advantages of SAPO-18 over SAPO-34 catalyst are more relevant for the transformation of 1-butene, where the propylene selectivity and yield increase over time, as secondary reactions are selectively neglected and coke condensation is slowed down.

    Keywords

    OLG HCE