​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways


    Problem Statement

    Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

    We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

    HPC

    Goals

    • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
    • Explore novel renewable and waste resources to obtain chemicals and fuels
    • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
    • Analyze process dynamics and kinetics

    Related People

    Related Publications

    Screening hydrotreating catalysts for the valorization of a light cycle oil/scrap tires oil blend based on a detailed product analysis

    by Palos, Kekalainen, Duodu, Gutierrez, Arandes, Janis, Castaño
    Appl. Catal. B: Environ. Year: 2019

    Abstract

    Predicting the hydrotreating performance of industrial catalysts used for upgrading heavy oils is hampered by the unknown chemistry behind it. In this work, we have used a set of chromatographic and mass spectrometric techniques (APPI/ESI FT-ICR MS, FID-MS GC × GC and PFPD GC) for acquiring a more precise composition of the feed and products of the hydrotreatment of a blend of light cycle oil and scrap tire oil (20  vol%) using three benchmark catalysts: CoMo/Al2O3, NiMo/SiO2-Al2O3 and NiW/USY zeolite. Despite the different nature of the catalysts, the composition of the products was relatively similar, indicating the slower and controlled transformation of the heaviest molecules of the feed, particularly in tire oil. A faithful analysis of these molecules by combining the results of the analysis clarifies the multiple mechanisms affecting hydrotreating simultaneously: hydrodearomatization, hydrocrackinghydrodesulfurization, hydrodeoxygenation and hydrodenitrification. An effort has been made to use these results in a quantitative manner for catalyst screening.

    Keywords

    HPC W2C ANW