​​

Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials


    Problem Statement

    Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

    We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

    We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.

    C2H-REF

    Goals

    • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
    • Model process simulations to analyze the viability of the process 
    • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
    • Analyze different process conditions to optimize hydrogen production and stability in the process

    Related People

    Related Publications

    Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production

    by Arandia, Remiro, Garcia, Castaño, Bilbao, Gayubo
    Catalysts Year: 2018

    Extra Information

    Open Access.

    Abstract

    Several Ni catalysts of supported (on La2O3-αAl2O3, CeO2, and CeO2-ZrO2) or bulk types (Ni-La perovskites and NiAl2O4 spinel) have been tested in the oxidative steam reforming (OSR) of raw bio-oil, and special attention has been paid to the catalysts’ regenerability by means of studies on reaction-regeneration cycles. The experimental set-up consists of two units in series, for the separation of pyrolytic lignin in the first step (at 500 °C) and the on line OSR of the remaining oxygenates in a fluidized bed reactor at 700 °C. The spent catalysts have been characterized by N2 adsorption-desorption, X-ray diffraction and temperature programmed reduction, and temperature programmed oxidation (TPO). The results reveal that among the supported catalysts, the best balance between activity-H2 selectivity-stability corresponds to Ni/La2O3-αAl2O3, due to its smaller Ni0 particle size. Additionally, it is more selective to H2 than perovskite catalysts and more stable than both perovskites and the spinel catalyst. However, the activity of the bulk NiAl2O4 spinel catalyst can be completely recovered after regeneration by coke combustion at 850 °C because the spinel structure is completely recovered, which facilitates the dispersion of Ni in the reduction step prior to reaction. Consequently, this catalyst is suitable for the OSR at a higher scale in reaction-regeneration cycles.

    Keywords

    REF W2C HCE