​​

Process development and deployment for the direct reforming of crude oil to hydrogen and carbon materials


    Problem Statement

    Hydrogen is a clean energy source and carrier because of its non−polluting combustion, making it an excellent alternative to the current fossil fuel-dominated energy scenario. Nonetheless, there are several critical challenges to implementing a broad sustainable use of hydrogen. In this project, we develop a laboratory−scale setup with stable operation and high hydrogen production.

    We aim at assessing (i) different hydrocarbon feedstock (from n-heptane to crude oil) fed to the reactor with water as emulsions, carried by steam or vaporized; (ii) steam reforming (SR) and auto thermal reforming (ATR); and (iii) stable and energy efficient catalysts for the efficient production of hydrogen inside packed, fluidized, and multifunctional reactors. These, coupled with carbon capture technologies, minimize the carbon footprint of the overall process.

    We support our research with simulations and techno−economic analysis to assess the approach's feasibility. C2H can use the current refinery infrastructure to reduce costs and the impact of market volatility on refinery operations.

    C2H-REF

    Goals

    • Develop and scale up advanced catalysts and reactors for converting crude to hydrogen
    • Model process simulations to analyze the viability of the process 
    • Scaling the technical catalysts for their demanding application: endothermic process, poisoning, massive coke deposition, and fluidized-bed reactors
    • Analyze different process conditions to optimize hydrogen production and stability in the process

    Related People

    Related Publications

    Catalytic conversion of crude oil to hydrogen by a one-step process via steam reforming

    by Albuali, Morlanes, Rendón-Patiño, Castaño, Gascon
    Int. J. Hydrog. Energy Year: 2024 DOI: https://doi.org/10.1016/j.ijhydene.2024.03.121

    Abstract

    This work presents a multi-functional NiCoCe-based catalyst for crude oil steam reforming for hydrogen production. Arab Light (AL) and Arab Extra Light (AXL) were centrifuged to reduce the asphaltenes and sequentially steam reformed in a fixed bed reactor. Results showed that the NiCoCe catalyst was stable and highly selective under reaction conditions and in cyclic operation. The physicochemical properties of the catalyst were determined via inductively coupled plasma–optical emission spectrometry, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The high dispersion of the NiCo alloy on a Mg–Al support was crucial for ensuring the hydrocarbon reforming in the presence of heteroatomic species.

    Keywords

    CRE O2H REF