​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through revamped fluidized catalytic cracking

    Problem Statement

    Direct catalytic cracking of crude oil to chemicals could soon dominate the petrochemical industry, with lower fuel consumption and increased production of light olefins and aromatics. We aim to simplify the refinery into a single-step conversion scheme to produce the most demanded petrochemicals.

    Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study nonlinear multiscale phenomena by coupling hydrodynamics, heat transfer, and reaction kinetics.

    We use particle image velocimetry and optical probes, kinetic modeling, computational particle-fluid dynamics, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

    We focus on the catalyst, reactor, and process levels to enhance and intensify the system. We are optimizing several state-of-the-art laboratory- and pilot-scale units, including a CircuBed®, a downer, and a multifunctional fluidized bed reactor.

    C2C-FCC

    Goals

    • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking, approaching intrinsic kinetics
    • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
    • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
    • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications, etc.

    Related People

    Related Publications

    Kinetic Modelling of Methylcyclohexane Ring-Opening over a HZSM-5 Zeolite Catalyst

    by Castaño, Gayubo, Pawelec, Fierro, Arandes
    Chem. Eng. J. Year: 2008

    Abstract

    A kinetic model is proposed in order to quantify product distribution in the ring-opening (using high hydrogen concentration in the reaction medium) of methylcyclohexane (MCH) over a catalyst based on HZSM-5 zeolite. The model is based on a reaction scheme proposed by Cerqueira et al. for methylcyclohexane cracking at atmospheric pressure, which has been modified in order to include the effect of hydrogen over the individual reaction steps. The experimental results used for estimating the kinetic constant were obtained in a fixed bed isothermal reactor in a wide range of conditions, i.e. 250–450 °C; WHSV = 0.5–10.5 h−1 (τ = 0.095–2 gcat h gMCH−1); pressure = 5–80 bar; H2/MCH molar flow ratio = 4–79; conversion = 0–100%. The kinetic model proposed can be regarded as a basis for the proposal of models for ring-opening reactions of more complex naphthenic feedstock from a prior hydrogenation step involving aromatic refinery streams of secondary interest.

    Keywords

    FCC HPC MKM