​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through revamped fluidized catalytic cracking

    Problem Statement

    Direct catalytic cracking of crude oil to chemicals could soon dominate the petrochemical industry, with lower fuel consumption and increased production of light olefins and aromatics. We aim to simplify the refinery into a single-step conversion scheme to produce the most demanded petrochemicals.

    Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study nonlinear multiscale phenomena by coupling hydrodynamics, heat transfer, and reaction kinetics.

    We use particle image velocimetry and optical probes, kinetic modeling, computational particle-fluid dynamics, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

    We focus on the catalyst, reactor, and process levels to enhance and intensify the system. We are optimizing several state-of-the-art laboratory- and pilot-scale units, including a CircuBed®, a downer, and a multifunctional fluidized bed reactor.

    C2C-FCC

    Goals

    • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking, approaching intrinsic kinetics
    • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
    • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
    • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications, etc.

    Related People

    Related Publications

    Insights into the Coke Deposited on HZSM-5, Hbeta and HY Zeolites during the Cracking of Polyethylene

    by Castaño, Elordi, Olazar, Aguayo, Pawelec, Bilbao
    Appl. Catal. B: Environ. Year: 2011

    Abstract

    The effect of the zeolite structure (HZSM-5, Hβ and HY) on coke deposition during the cracking of high-density polyethylene has been studied by combining the results of multiple spectroscopic and analytical techniques: FTIR, Raman, UV–vis, 13C NMR and coke extraction, followed by GC-MS and 1H NMR analysis. In addition, by combining FTIR and temperature programmed oxidation (TPO) analysis we obtained information on the coke: properties, burn-off, and changes in composition during catalyst regeneration. Samples of the spent catalysts were obtained in a state-of-the-art pilot plant (conical spouted bed reactor) after the continuous treatment of 900 g (1 g min−1, 15 h) of high-density polyethylene at 500 °C, using 30 g of catalyst. The results show that as the pore diameter of the zeolite is increased, bimolecular reactions (hydrogen transfer and oligomerizations), condensations and cyclizations are enhanced, yielding more aromatic coke. Furthermore, the pore topology of the HZSM-5 zeolite improves the flow of coke precursors (also favored by the high flow rate of N2) to the outside of the catalyst; viz. HZSM-5 catalyst preserves its activity for longer.

    Keywords

    FCC W2C ANW HCE