​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through revamped fluidized catalytic cracking

    Problem Statement

    Direct catalytic cracking of crude oil to chemicals could soon dominate the petrochemical industry, with lower fuel consumption and increased production of light olefins and aromatics. We aim to simplify the refinery into a single-step conversion scheme to produce the most demanded petrochemicals.

    Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study nonlinear multiscale phenomena by coupling hydrodynamics, heat transfer, and reaction kinetics.

    We use particle image velocimetry and optical probes, kinetic modeling, computational particle-fluid dynamics, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

    We focus on the catalyst, reactor, and process levels to enhance and intensify the system. We are optimizing several state-of-the-art laboratory- and pilot-scale units, including a CircuBed®, a downer, and a multifunctional fluidized bed reactor.

    C2C-FCC

    Goals

    • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking, approaching intrinsic kinetics
    • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
    • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
    • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications, etc.

    Related People

    Related Publications

    Effect of Hydrogen on the Cracking Mechanisms of Cycloalkanes over Zeolites

    by Castaño, Arandes, Olazar, Bilbao, Pawelec, Sedran
    Catal. Today Year: 2010

    Abstract

    Hydrocracking of secondary interest refinery streams (high aromatic content) can yield valuable products for transportation and petrochemical industry. In order to promote the hydrogenation and cracking steps, a bifunctional catalyst (metal + acid function) is required. We have studied the effect of the operating conditions on cycloalkane (product of aromatic hydrogenation) ring opening over a monofunctional HZSM-5 zeolite, by focusing on the effect of hydrogen in the cracking mechanisms. Methylcyclohexane has been selected as the test reactant and the conditions used corresponds to temperature, 250–450 °C; space velocity, 0.7–1.1 h−1; pressure, 2–80 bar; hydrogen/methylcyclohexane molar ratio, 1–79; conversion, 0–100% (integral reactor). At these conditions the zeolite catalyses hydrogenation as well as cracking (bifunctional capabilities), thus the cracking mechanisms are directly affected by hydrogen as products (alkenes) and intermediates (carbenium ions) are saturated. The overall effect of rising hydrogen partial pressure is an enhancement of (hydro)isomerization and monomolecular cracking, that is, an increase of the yield/selectivity of methane, ethane, penthane and isoalkanes.

    Keywords

    FCC HPC MKM