​​

Reactor design and optimization for converting crude (and refinery wastes) to chemicals in one step through revamped fluidized catalytic cracking

    Problem Statement

    Direct catalytic cracking of crude oil to chemicals could soon dominate the petrochemical industry, with lower fuel consumption and increased production of light olefins and aromatics. We aim to simplify the refinery into a single-step conversion scheme to produce the most demanded petrochemicals.

    Using a bottom-up holistic approach, we design a catalytic crude-to-chemicals process toward this goal. We investigate advanced reactors with intrinsic kinetic data and controlled hydrodynamics to improve the process. We study nonlinear multiscale phenomena by coupling hydrodynamics, heat transfer, and reaction kinetics.

    We use particle image velocimetry and optical probes, kinetic modeling, computational particle-fluid dynamics, and optimization approaches to improve operating scenarios and develop innovative reactor prototypes.

    We focus on the catalyst, reactor, and process levels to enhance and intensify the system. We are optimizing several state-of-the-art laboratory- and pilot-scale units, including a CircuBed®, a downer, and a multifunctional fluidized bed reactor.

    C2C-FCC

    Goals

    • Develop and scale up advanced reactors for converting crude oil to chemicals through fluid catalytic cracking, approaching intrinsic kinetics
    • Model process dynamics using reactive particle fluid dynamics coupled with experimental validations
    • Establish a design workflow for short-contact time reactors based on modeling, prototyping, and testing
    • Analyze the novel process developments in fluid catalytic cracking: novel feedstock, process modifications, etc.

    Related People

    Related Publications

    Catalytic Cracking of Waxes Produced by the Fast Pyrolysis of Polyolefins

    by Arandes, Torre, Castaño, Olazar, Bilbao
    Energy & Fuels Year: 2007

    Abstract

    The cracking of the waxes obtained in the flash pyrolysis of polypropylene has been studied in laboratory FCC units under the standard conditions in FCC (fluid catalytic cracking) units. The reaction equipment is provided with a riser simulator reactor, and the experiments have been carried out using a commercial equilibrium catalyst, with a catalyst/feed ratio of C/O = 5.5, in the 500−550 °C range and for contact times between 3 and 12 s. The effect of these operating conditions on the yields of products and on the composition of gas and gasoline lumps has been studied. The results have been compared with those of VGO (vacuum gas oil) cracking, which is the standard FCC feed in refineries, and with those of a mixture of VGO (80 wt %) and waxes (20 wt %).

    Keywords

    FCC W2C ANW