Multiscale kinetic modeling in catalysis ⇒ from microkinetics to computational fluid dynamics and process simulations

Problem statement

We envision multiscale modeling as critical enablers of reaction understanding, catalyst and reactor design, scale-up, and process optimization. The framework includes predicting the molecular reaction mechanism at the molecular level to the process optimization stage. As catalytic processes occur at the multiscale, we address these issues individually and collectively.

At the microkinetic level, our models resolve the rates of the individual elementary steps, rate-determining step (RDS), adsorption, and desorption mechanisms. We use quantum chemical calculations (density functional theory, DFT) to support our assumed kinetic pathways, original parameter estimations, and adsorption-desorption energies.

We incorporate thermodynamic constraints into our models. Once developed, the microkinetic model could guide the catalyst and reactor design. We also have experience developing Langmuir-Hinshelwood and Eley-Rideal types of kinetic models.

At the macrokineitc level, we develop lump-based and empirical models which, in some cases, are very robust and, together with other models, can be used to extract information such as mechanism change, optimize conditions, or for reactor pre-design.

We couple hydrodynamics, heat transfer, and reaction kinetics at the reactor level in computational fluid dynamic (CFD) simulations. Together with optimization algorithms, we aim to improve operating scenarios, develop innovative reactor prototypes, and predict process behaviors at the industrial scale.

Goals

  • Microkinetics I ⇒ key thermodynamic relationships
  • Microkinetics II ⇒ fitting, training, and optimization
  • Microkinetics III ⇒ ab initio kinetic modeling
  • Macrokinetics ⇒ complex reaction networks and population balances
  • CPFD ⇒ reactor modeling and scale-up
  • CFD ⇒ reactor modeling and optimization
  • CFD II ⇒ modeling operando reactors
  • Process system engineering ⇒ gPROMS

Related People

Related Covers

Related Publications

Role of Oxygenates and Effect of Operating Conditions in the Deactivation of a Ni Supported Catalyst During the Steam Reforming of Bio-oil

by Ochoa, Aramburu, Valle, Resasco, Bilbao, Gayubo, Castaño
Green Chem. Year: 2017

Extra Information

Green Chemistry Hot Articles.

Abstract

This work investigates the correlation of the reaction conditions (temperature and steam-to-carbon ratio (S/C)) and the reaction medium composition with the deactivation behavior of a Ni/La2O3-αAl2O3 catalyst used in steam reforming of bio-oil, aiming at sustainable hydrogen production from lignocellulosic biomass. The reaction was performed in an in-line two-step system consisting of thermal treatment of bio-oil at 500 °C for retaining the thermal pyrolytic lignin and in-line steam reforming of the remaining oxygenates in a fluidized bed catalytic reactor. The reforming step was conducted at 550 and 700 °C and S/C ratios of 1.5 and 6. Fresh and deactivated catalyst samples were characterized using XRD, SEM, TEM, TPO, XPS, Raman and FTIR spectroscopy. The catalyst deactivation was mainly due to the amorphous and encapsulating coke deposition whose formation is attenuated when both the temperature and S/C ratio are increased. Although the highest catalyst stability is attained at 700 °C and/or an S/C ratio of 6, Ni sintering is noticeable under these conditions. The encapsulating coke is highly oxygenated, in contrast with the more aromatic and condensed nature of filamentous coke. Based on the correlation between the composition of the coke and the reaction medium, it was established that bio-oil oxygenates are the precursors of the encapsulating coke, particularly phenols and alcohols, whereas CO and CH4 are the possible precursors of the coke fraction made of filaments whose contribution to catalyst deactivation is hardly significant.

Keywords

REF W2C ANW MKM