Wasteomics ⇒ a workflow to analyze complex reaction environments, waste, and realistic feeds conversions



Problem statement

In most heterogeneous catalytic processes, the reactive environment contains a mixture of reactants, intermediates, and products, and some adsorbed-trapped on the catalytic surface and elsewhere. Thus, most reacting environments in catalysis are complex, involve several phases (multiphase), and comprise unstable species or are challenging to analyze. To make things worse, some of these species have (auto-)catalytic or deactivating nature on the kinetics of the surrounding ones.

A typical practice in catalysis is using model molecules or surrogates to deepen into the mechanistic pathways, microkinetics, spectroscopy, etc. Conversely, analytical techniques keep evolving, becoming more precise but always targeting a specific fraction or type of species. That is to say, there is only one technique that solves all.

We aim to bridge the fundamental research performed in our group and outside using model molecules with a powerful analytical multi-technique approach to analyze the entire reaction media. The -omics fields inspire us to reflect on the collective characterization and quantification of pools of molecules that translate into the structure, function, and dynamics involved. We apply our approach to hydrocarbon transformations and green-sustainable feedstock (i.e., waste plastics, sewage sludge, biomass, algae, and seaweed). We develop multi-technique analytical protocols for the complete chemical molecular-level description of complex mixtures.

Goals

  • Analytical workflow ⇒ multi-analytical technique integration
  • Wasteometrics I ⇒ quantitative- and molecular-level analysis
  • Wasteometrics II ⇒ data mining and processing
  • Wasteomics ⇒ reaction networks and kinetic modeling

Related People

Related Covers

Related Publications

Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil

by Hita, Rodriguez, Olazar, Bilbao, Arandes, Castaño
Energy & Fuels Year: 2015

Abstract

The hydrocracking of hydrotreated scrap tires pyrolysis oil (HT-STPO) has been studied aiming at high-quality refinery blends for alternative automotive fuels. The hydrocracking runs have been carried out with a PtPd/SiO2-Al2O3 catalyst in a fixed-bed reactor at 440–500 °C, 65 bar and space time of 0.16 h. The catalyst has been characterized by inductively coupled plasma optical emission spectroscopy, N2 adsorption–desorption isotherms, and tert-butylamine adsorption–desorption (TPD), while coke has been studied both quantitatively and qualitatively by thermogravimetric-temperature-programmed oxidation (TG-TPO), Fourier transform infrared-TPO, and Raman spectroscopy. During the first two hours of reaction and at temperatures above 480 °C, we have been able to (1) reach ultra low sulfur levels lower than 15 ppm; (2) remove almost completely the less interesting fraction—boiling points higher than 350 °C, named as the gasoil fraction—with remaining amounts lower than 1 wt %; (3) obtain a paraffinic and isoparaffinic content higher than 70 wt %. Catalyst deactivation is due to coke deposition having both an aromatic and aliphatic nature, while the aromaticity increases with process temperature. It has been proven that the temperature conditions can be tuned to reach a state in which coke is generated at the same rate that it is being hydrocracked.

Keywords

W2C REF ANW