Wasteomics ⇒ a workflow to analyze complex reaction environments, waste, and realistic feeds conversions



Problem statement

In most heterogeneous catalytic processes, the reactive environment contains a mixture of reactants, intermediates, and products, and some adsorbed-trapped on the catalytic surface and elsewhere. Thus, most reacting environments in catalysis are complex, involve several phases (multiphase), and comprise unstable species or are challenging to analyze. To make things worse, some of these species have (auto-)catalytic or deactivating nature on the kinetics of the surrounding ones.

A typical practice in catalysis is using model molecules or surrogates to deepen into the mechanistic pathways, microkinetics, spectroscopy, etc. Conversely, analytical techniques keep evolving, becoming more precise but always targeting a specific fraction or type of species. That is to say, there is only one technique that solves all.

We aim to bridge the fundamental research performed in our group and outside using model molecules with a powerful analytical multi-technique approach to analyze the entire reaction media. The -omics fields inspire us to reflect on the collective characterization and quantification of pools of molecules that translate into the structure, function, and dynamics involved. We apply our approach to hydrocarbon transformations and green-sustainable feedstock (i.e., waste plastics, sewage sludge, biomass, algae, and seaweed). We develop multi-technique analytical protocols for the complete chemical molecular-level description of complex mixtures.

Goals

  • Analytical workflow ⇒ multi-analytical technique integration
  • Wasteometrics I ⇒ quantitative- and molecular-level analysis
  • Wasteometrics II ⇒ data mining and processing
  • Wasteomics ⇒ reaction networks and kinetic modeling

Related People

Related Publications

Polymeric Waste Valorization at a Crossroads: Ten Ways to Bridge Research on Model and Complex/Real Feedstock

by Hita, Sarathy, Castaño
Green Chem. Year: 2021

Abstract

The valorization of polymeric wastes, such as biomass, tires, and plastics, via thermal depolymerization (i.e., pyrolysis or liquefaction) and simultaneous or subsequent catalytic treatment has gained enormous momentum. The inherent hurdles when using complex polymeric wastes or their products as feedstock have led researchers to conclude that obtaining a fundamental kinetic understanding of the catalytic stage is unfeasible. To overcome the issues related to feedstock complexity, the majority of researchers have decided to use representative model compounds or probe molecules (i.e., surrogates). Two separate mainstreams have emerged in this field: one focusing on the fundamental kinetic understanding of model molecules and the other focused on studying real feedstock. We aimed to merge these approaches to utilize and acknowledge their potential and drawbacks. Therefore, herein, we provide ten recommendations for exploiting the existing synergies between the two approaches. This manuscript first contextualizes our proposed recommendations with a short overview on the thermocatalytic valorization field for polymeric waste, the complex compositions of reactants and products, the progress made in the individual fields of model and real feedstock, comparisons of both feedstock types, and some previous history on hydrocarbon conversion. Subsequently, we present guidelines for a truly cooperative and synergetic research effort.

Keywords

FCC REF HPC W2C ANW