Wasteomics ⇒ a workflow to analyze complex reaction environments, waste, and realistic feeds conversions



Problem statement

In most heterogeneous catalytic processes, the reactive environment contains a mixture of reactants, intermediates, and products, and some adsorbed-trapped on the catalytic surface and elsewhere. Thus, most reacting environments in catalysis are complex, involve several phases (multiphase), and comprise unstable species or are challenging to analyze. To make things worse, some of these species have (auto-)catalytic or deactivating nature on the kinetics of the surrounding ones.

A typical practice in catalysis is using model molecules or surrogates to deepen into the mechanistic pathways, microkinetics, spectroscopy, etc. Conversely, analytical techniques keep evolving, becoming more precise but always targeting a specific fraction or type of species. That is to say, there is only one technique that solves all.

We aim to bridge the fundamental research performed in our group and outside using model molecules with a powerful analytical multi-technique approach to analyze the entire reaction media. The -omics fields inspire us to reflect on the collective characterization and quantification of pools of molecules that translate into the structure, function, and dynamics involved. We apply our approach to hydrocarbon transformations and green-sustainable feedstock (i.e., waste plastics, sewage sludge, biomass, algae, and seaweed). We develop multi-technique analytical protocols for the complete chemical molecular-level description of complex mixtures.

Goals

  • Analytical workflow ⇒ multi-analytical technique integration
  • Wasteometrics I ⇒ quantitative- and molecular-level analysis
  • Wasteometrics II ⇒ data mining and processing
  • Wasteomics ⇒ reaction networks and kinetic modeling

Related People

Related Covers

Related Publications

Mechanistic Insight into Heteroatom Removal from Vacuum Gas Oil Blended with PMMA or PET Waste

by Zambrano, Trueba, Hita, Palos, Azkoiti, Gutierrez, Castaño
ChemSusChem Year: 2024 DOI: https://doi.org/10.1002/cssc.202400581

Abstract

This work analyzes vacuum gas oil (VGO) and hydrocracking products of this feed blended with polymethylmethacrylate (PMMA) or polyethylene terephthalate (PET) to clarify the oxygen, nitrogen, and sulfur removal pathways in these complex mixtures. Hydrocracking reactions are conducted in a semi-batch reactor with a Pt−Pd/HY bifunctional catalyst at 400 °C and 80 bar for 300 min with 10 wt % waste plastic using 0.1 catalyst/feed weight ratio. The samples are analyzed using various techniques, including high-resolution mass spectrometry, providing an improved, more detailed analytical representation. The results demonstrate the synergistic effect of cofeeding oxygenated plastics to the VGO, altering the preferential reaction pathways of heteroatom-containing species in the following order: nitrogen, oxygen, and sulfur. We assess the nature of the species from the gathered data, establish plausible reaction mechanisms, and evaluate the catalyst's role.

Keywords

ANW HPC