The technological prospects of repurposing methane steam reformers into ammonia crackers for decarbonized H2 production

by Realpe, Lezcano, Kulkarni, Sayas, Morlanes, Rakib, Aldilaijan, Solami, Gascon, Castaño
Appl. Energy Year: 2024 DOI: https://doi.org/10.1016/j.apenergy.2024.124244

Abstract

The decarbonization of hydrogen production can be accelerated by repurposing existing methane steam reformers into ammonia crackers. Through kinetic modeling, reactor optimization, and process integration, we demonstrated the viability of repurposing industrial reformers into NH3 crackers using a Co-Ba-Ce extrudate catalyst. First, we combined an improved kinetic rate expression, validated through experiments, with a high-fidelity 2-D model to optimize the operation of a multi-tubular reactor with a fixed capacity of 7000 Nm3 h−1. Subsequently, we used heat integration techniques to integrate the reactor with supplementary and separation units. We proved the process energy efficiency to be 65.7% before heat integration and 75.3% for the integrated plant. The integrated, optimized plant results demonstrated the necessity of implementing an adiabatic pre-cracker, an element typically omitted in catalytic NH3decomposition techno-economic models. Our findings underscore the importance of real-world constraints and operational aspects in designing and optimizing NH3 conversion processes.

Keywords

MKM AMD