​​

Controlling selectivity and stability of zeolite catalysts for methanol to hydrocarbons and ethylene oligomerization

Problem statement

Olefins are commodity chemicals with applications in the production of plastics (petrochemical industry), lubricants, plasticizers, and surfactants, among many others. However, there is an imbalance between their production and demand, which oligomerization-cracking reactions over zeolites could solve. At the same time, zeolites are excellent catalysts for methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). The processes aim to produce light hydrocarbons like propylene or convert ethylene into higher-value a-olefins, aromatic hydrocarbons (BTX), and jet fuel.

Our focus in this project is to modify, synthesize and develop novel materials of different porosity (engineered at the multiscale): from hierarchical zeolites, nano zeolites, and hollow zeolites to catalytic particles, bodies, spray-dried and extrudates with tuned properties. Additionally, we incorporate different metals (i.e., Ni, Cr, Zn) to adjust the selectivity of desired products.

We use various reactors, such as operando or high-throughput packed-bed and batch reactors.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
OLG2023

Related People

Related Publications

Quenching the Deactivation in the Methanol-to-Olefin Reaction by Using Tandem Fixed-Beds of ZSM-5 and SAPO-18 Catalysts

by Valecillos, Tabernilla, Sastre, Aguayo, Castaño
Ind. Eng. Chem. Res. Year: 2020

Abstract

We proved that the disposition of tandem fixed-beds of ZSM-5 with SAPO-18 catalysts could decrease the deactivation of the second catalytic bed during the methanol-to-olefin reaction. For this purpose, we prepared two catalysts based on ZSM-5 zeolite and SAPO-18 zeotype; characterized them using XPS, XRD, 29Si NMR, N2 physisorption, NH3-TPD, and Fourier-transform infrared (FTIR); tested them individually, in mixed or tandem forms using a fixed-bed reactor or in situ reactors monitored with UV–vis or FTIR spectroscopies; and characterized the catalyst during the reaction or after it. The catalytic beds (mixed or tandem) did not offer any significant enhancement or synergetic effect in product selectivity. However, the catalytic lifetime of the second bed in the tandem catalytic beds (particularly if that is made up of the SAPO-18 catalyst) was prolonged because this bed receives less oxygenates (methanol and dimethyl ether) and more water, which slows down the deactivation of the second catalytic bed.

Keywords

O2H CRE