Controlling selectivity and stability of zeolite catalysts for methanol to hydrocarbons and ethylene oligomerization

Problem statement

Olefins are commodity chemicals with applications in the production of plastics (petrochemical industry), lubricants, plasticizers, and surfactants, among many others. However, there is an imbalance between their production and demand, which oligomerization-cracking reactions over zeolites could solve. At the same time, zeolites are excellent catalysts for methanol to hydrocarbons (MTH), olefins (MTO), or aromatics (MTA). The processes aim to produce light hydrocarbons like propylene or convert ethylene into higher-value a-olefins, aromatic hydrocarbons (BTX), and jet fuel.

Our focus in this project is to modify, synthesize and develop novel materials of different porosity (engineered at the multiscale): from hierarchical zeolites, nano zeolites, and hollow zeolites to catalytic particles, bodies, spray-dried and extrudates with tuned properties. Additionally, we incorporate different metals (i.e., Ni, Cr, Zn) to adjust the selectivity of desired products.

We use various reactors, such as operando or high-throughput packed-bed and batch reactors.


  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics

Related People

Related Publications

Evaluating catalytic (gas–solid) spectroscopic cells as intrinsic kinetic reactors: Methanol-to-hydrocarbon reaction as a case study

by Valecillos, Elordi, Cui, Aguayo, Castaño
Chem. Eng. J. Year: 2022 DOI: https://doi.org/10.1016/j.cej.2022.137865


Commercial spectroscopic gas–solid cell reactors are routinely used to analyze the dynamics of the catalyst (catalyst pelletized as a disc) structure and retained/adsorbed species using multiple operandotechniques. These instruments have revolutionized the understanding of many catalytic reactions, including the methanol-to-hydrocarbon reactions. We propose a reaction engineering framework to evaluate spectroscopic cells based on (a) analyzing the fluid dynamic performance, (b) comparing their performance with a reference packed-bed reactor, and (c) the assessment of the external and internal mass transfer limitations. We have used a Specac HTHP and a Linkam THMS600 cell reactors coupled with the corresponding gas conditioning, spectroscopic, and mass spectrometry apparatuses. Our results reveal that these cells approach a perfect mixing only with several equivalent tanks in series and they are reliable at low catalyst loadings (thin disc) and high flowrates (low spacetimes). Under these conditions, we can avoid external-internal mass transfer limitations and fluid dynamic artifacts (e.g., bypassing or dead/stagnant volume zones), obtaining intrinsic kinetics with the corresponding operando spectroscopic signatures. The proposed methodology allows to understand the influence of process parameters and potential design modifications on the observed kinetic performance.