Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Publications

Understanding catalyst deactivation during the direct cracking of crude oil

by Alabdullah, Shoinkhorova, Dikhtiarenko, Ould-Chikh, Rodriguez Gomez, Chung, Alahmadi, Hita, Pairis, Hazemann, Castaño, Ruiz-Martinez, Morlanes, Almajnouni, Xu, Gascon
Catal. Sci. Technol. Year: 2022 DOI: https://doi.org/10.1039/D2CY01125E

Abstract

The increasing demand for base chemicals i.e., ethylene and propylene, along with the expected peak in gasoline and fuels demand, are stirring intense research into refineries to be built around processes that maximize the production of chemicals (oil to chemicals, OTC, processes). One of the main challenges at hand for OTC technologies is the formulation of appropriate catalysts able to handle the wide boiling point of the feed and to withstand continuous operation at industrial scale. Hydrothermal degradation, coke deposition and the presence of impurities, such as metals, sulfur and nitrogen containing species, in the feedstock affect catalyst lifetime, activity and selectivity. In this work, we evaluate long term catalyst stability along with the main causes of reversible and irreversible catalyst deactivation. Our results demonstrate that formulation prevents, to a large extent, the degradation of the zeolitic components of the catalyst. Metal deposition, on the other hand, results in a slight decrease in activity along with partial changes in selectivity patterns. The main reasons behind these changes are discussed in detail with the help of extensive characterization

Keywords

C2C HCE CRE