Catalytic reactor engineering ⇒ information-driven design of packed (operando), fluidized, multi-functional, and -phase reactors

Problem statement

At lab-scale, the ultimate goal of a catalytic reactor is to provide (1) reliable kinetic information, neglecting or controlling other phenomena (heat-mass transfer and hydrodynamics); (2) high-throughput data to amplify the results, accelerate model and catalyst discoveries; and (3) results with the minimum requirements of reactants and wastes generated. The pillars of these reactors are quality, quantity, and safety.

We design, build and test different laboratory-scale reactors. Our strategy involves creating and testing reactor prototypes while modeling these using our workflow. We have high-speed cameras, probes, and other measuring instruments to understand the reactor behavior. We focus on packed-, fluidized-bed, and multiphase reactors:

In packed bed reactors, we focus on forced dynamic and operando reactors. These are the quintessence of information-driven reactors where the dynamics can involve flow changes, temperature, pressure, partial pressure, presence of activity modifiers (poissons, H2O…). In operando reactors, we follow a spectro-kinetic-deactivation-hydrodynamic approach to resolve the individual steps involved. In fluidized bed reactors, we focus on downers and multifunctional reactors (circulating, multizone or two-zone, Berty reactors) We focus on trickle-bed, slurry, and bio-electrochemical reactors in multiphase bed reactors.

Al pilot-plant scale, we aim to reach the maximum productivity levels while solving the growing pains: the scale-up. Based on a robust kinetic model obtained in the intrinsic kinetic reactor (lab-scale) and using computational fluid dynamics, we design, build, and operate pilot plants. At this stage, we seek partnerships with investment or industrial enterprises to make these pilot plants.

Goals

  • Multifunctional fluidized bed reactors ⇒ multizone, circulating...
  • Packed bed membrane reactors
  • Forced dynamic reactors ⇒ pulsing, SSITKA...
  • Forced dynamic operando reactors ⇒ DRIFTS, TPSR...
  • Operando reactors
  • Spray fluidized bed reactors
  • Downer reactor I ⇒ micro downer
  • Downer reactor II ⇒ counter-current and scale-up
  • Batch Berty reactor ⇒ short contact time
  • Multiphase reactors ⇒ trickle bed and slurry
  • High throughput experimentation (HTE) reactors
  • Photo-thermal and bioreactors
  • Reactor visualization and prototyping lab
  • Spatio-temporal hydrodynamic characterization and validation

Related People

Related Publications

Regulating the crude oil–to–chemical process in a multizone fluidized bed reactor using unconventional catalyst formulations

by Cui, Dikhtiarenko, Kulkarni, Shoinkhorova, Al Aslani, Alabdullah, Mazumder, Medina Flores, Alahmadi, Alfilfil, Morales-Osorio, Almajnouni, Gascon, Castaño
Powder Tech. Year: 2024 DOI: https://doi.org/10.1016/j.powtec.2024.119573

Abstract

Crude oil catalytic cracking to petrochemicals in one step is a profitable pathway for future refineries yet it has significant hurdles. We investigated adding silicon carbide to the formulation and adjusting the crude oil–to–chemicals process in a multizone fluidized bed reactor by improving the morphology for hydrodynamics and thermal conductivity for heat transfer to promote the catalytic cracking performance. First, we synthesized and characterized catalysts with various SiC sizes and contents to select the best based on morphology. Then, we compared this catalyst against an industrial benchmark catalyst using computational particle fluid dynamics to understand the catalyst circulation and heat transfer in realistic crude oil–to–chemicals process conditions. Finally, we performed catalytic cracking experiments using this catalyst and the benchmark under optimal conditions. The higher light olefin yield from the unconventional catalyst formulation validated our workflow for regulating the crude oil–to–chemical process.

Keywords

C2C CRE MKM