​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

The Role of Zeolite Acidity in Coupled Toluene Hydrogenation and Ring-Opening in One and Two Steps

by Castaño, Pawelec, Aguayo, Gatyubo, Arandes
Ind. Eng. Chem. Res. Year: 2008

Abstract

In this work, the effect of HZSM-5 zeolite acidity on hydroconversion of methylcyclohexane and toluene has been studied. These are test reactions for the second step and the single step of aromatic valorization process, respectively, with the aim of obtaining C2+n-alkanes and isoalkanes. Monofunctional HZSM-5 zeolite catalysts (Si:Al ratio between 15 and 140) have been studied in methylcyclohexane ring opening while bifunctional catalysts (hybrid Pt/Al2O3-HZSM-5, same zeolites) have been used in the hydrocracking of toluene. Runs have been carried out in a fixed bed reactor under 250−450 °C and 20−80 bar. A positive effect of HZSM-5 zeolite acidity on methylcyclohexane conversion and C2+n-alkane selectivity is evident at certain conditions, whereas the maximum selectivity to isoalkanes requires an intermediate value of acidity. On the basis of the relationship between conversion and the Si:Al ratio of the HZSM-5 zeolite, the hydrogenolytic cracking of methylcyclohexane is proposed as a test reaction to determine the Si:Al ratio. Acidity has a highly favorable effect in the hydrocracking of toluene given that it avoids the thermodynamic restrictions for toluene hydrogenation and enhancing all the cracking steps during methylcyclohexane (MCH) transformation, which increases selectivity to C2+n-alkanes and isoalkanes.

Keywords

HCE HPC FCC