ā€‹ā€‹

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting Cā€“C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

Selective ring-opening of polycyclic to monocyclic aromatics: A data- and technology-oriented critical review

by Lezcano, Hita, Yerrayya, Bendjeriou-Sedjarari, Jawad, Lozano-Ballesteros, Sun, Al-Mana, AlAmer, Albaher, Castaño
Prog. Energy Combust. Sci. Year: 2023 DOI: https://doi.org/10.1016/j.pecs.2023.101110

Abstract

Polyaromatic hydrocarbons, polycyclic aromatics or polyarenes are a major (by-)product fraction of multiple classical, waste, and bio-refinery operations. They have an extremely negative environmental impact, a minimal market, and a lowering demand. Parallelly, lowly alkylated single ring arenes or monoaromatics (benzene, toluene, and xylenes, the so-called BTX fraction) are highly demanded due to their applications as chemicals or fuels. Herein, we review the status of applied polyaromatic selective ring-opening (SRO) by hydrocracking into monoaromatics. This review addresses the involved mechanisms, applicable catalysts, and reported modeling approaches for SRO. Applying the multivariate analysis to the results reported in the literature using model molecules, we showcase the limitations for extrapolating the obtained knowledge to realistic polyaromatic stream processing. We also provide a statistical evaluation of the suitability of several polyaromatic streams for their SRO processing and assess the markets, usage, and production routes for monocyclic aromatics. Finally, the technologies of these processes are also evaluated and compared, while the most promising one is discussed further based on process simulations and a techno-economic assessment.

Keywords

HPC W2C