ā€‹ā€‹

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting Cā€“C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

Polymeric Waste Valorization at a Crossroads: Ten Ways to Bridge Research on Model and Complex/Real Feedstock

by Hita, Sarathy, Castaño
Green Chem. Year: 2021

Abstract

The valorization of polymeric wastes, such as biomass, tires, and plastics, via thermal depolymerization (i.e., pyrolysis or liquefaction) and simultaneous or subsequent catalytic treatment has gained enormous momentum. The inherent hurdles when using complex polymeric wastes or their products as feedstock have led researchers to conclude that obtaining a fundamental kinetic understanding of the catalytic stage is unfeasible. To overcome the issues related to feedstock complexity, the majority of researchers have decided to use representative model compounds or probe molecules (i.e., surrogates). Two separate mainstreams have emerged in this field: one focusing on the fundamental kinetic understanding of model molecules and the other focused on studying real feedstock. We aimed to merge these approaches to utilize and acknowledge their potential and drawbacks. Therefore, herein, we provide ten recommendations for exploiting the existing synergies between the two approaches. This manuscript first contextualizes our proposed recommendations with a short overview on the thermocatalytic valorization field for polymeric waste, the complex compositions of reactants and products, the progress made in the individual fields of model and real feedstock, comparisons of both feedstock types, and some previous history on hydrocarbon conversion. Subsequently, we present guidelines for a truly cooperative and synergetic research effort.

Keywords

FCC REF HPC W2C ANW