​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

Inhibition of CoMo/HMS Catalyst Deactivation in the HDS of 4,6-DMDBT by Support Modification with Phosphate

by Nava, Infantes-Molina, Castaño, Guil-Lopez, Pawelec
Fuel Year: 2011

Abstract

A series of CoMoS catalysts supported on hexagonal mesoporous silica (HMS) modified with different amounts of phosphate (0.5, 1.0, 1.5 and 2.0 wt.%) were prepared in order to study the influence of phosphate on catalyst deactivation. The catalysts were characterized by a variety of techniques (X-ray fluorescence, N2 adsorption–desorption at 77 K, FT-IR study of the framework vibration and NO adsorption, NH3-TPD, H2–TPR, XPS, 31P NMR and TPO/TGA). The sulfided catalysts were tested in the deep hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene (4,6-DMDBT) performed in a fixed-bed flow reactor at 598 K, = 5.0 MPa and WHSV = 46.4 h−1. The catalyst with the largest phosphate content (2.0 wt.%) showed the best catalytic response linked with its low deactivation during on-stream reaction and a larger sulfidation degree of Co species. It was found that coking behavior is closely related with the location of the active sites in the support structure being a lower coke formation on the catalysts having active phases located within support structure. The catalysts modified with a large amount of phosphorous (1.5 and 2.0 wt.% of P2O5) were more susceptible to coking and produced a more polymerized coke than P-free sample, as confirmed by TPO/TGA experiments. The presence of P2O5 favours the sulfidation degree of Co species and the creation of medium strength acid sites leading to the enhancement of the 4,6-DMDBT HDS reaction toward the isomerization route.

Keywords

HPC HCE