​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

Factors Influencing the Thioresistance of Nickel Catalysts in Aromatics Hydrogenation

by Pawelec, Castaño, Arandes, Thomas, Pena, Fierro
Appl. Catal. A: Gen. Year: 2007

Abstract

Silica–alumina supported nickel catalysts (Ni/ASA) have been modified by the incorporation of electrodonor (Li) or electro acceptor (Pd) elements with the objective of determining the factors controlling the catalyst thioresistance in benzene hydrogenation. The catalysts were tested in benzene hydrogenation (HYD) in the presence of 1-butanethiol (C4H9SH 5 ppm of S) and in the hydroconversion of pyrolysis gasoline (PyGas) and compared with zeolite NaY-supported ones. In addition, the catalysts were characterized by variety of techniques (XRD, N2 adsorption–desorption, TPD-H2, TPD-NH3, CO chemisorption, TPR, XPS, FTIR of adsorbed pyridine, TGA–DTA). It was found that the monometallic Ni/ASA catalyst with 24 wt.% of Ni was the most active among the catalysts studied in both benzene hydrogenation (+S) and hydroconversion of PyGas. The data of catalyst characterization suggests that the concentration of both metal and acid sites govern catalytic activity in both activity tests being the catalyst ability for hydrogen adsorption one of the most important factors to be taken into account. In general, it was found that the S-poisoning of the catalysts increased with an increase of the catalyst reactivity and diminished when “refractory-type” coke deposited on the metal sites inhibited the S-compound adsorption. For PyGas transformation, the importance of Pd promotion of the nickel catalysts was confirmed for both hydrogenation and ring-opening reactions.

Keywords

HPC HCE