​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

Enhancement of Pyrolysis Gasoline Hydrogenation over Pd-promoted Ni/SiO2-Al2O3 Catalysts

by Castaño, Pawelec, Fierro, Arandes, Bilbao
Fuel Year: 2007

Abstract

Pyrolysis gasoline upgrading by hydrogenation and ring opening was investigated over highly loaded Ni catalysts supported on amorphous silica–alumina and incorporating promoters as Pd, seeking a higher aromatic reduction of this feedstock in order to meet stringent fuel regulations. The effect of Ni loading and Pd component on the activity of those systems was evaluated in a fixed bed reactor under the following operating conditions: T = 573 and 673 K, H2:PyGas molar ratio = 10, P = 5.0 MPa, WHSV = 4 h−1. The catalyst properties, measured by several characterization techniques (ICP-AES, XRD, N2 adsorption–desorption isotherms, TPR, H2-TPD, CO chemisorption, XPS, FTIR spectroscopy of adsorbed pyridine and NH3-TPD), were related to their catalytic activity and selectivity. Interestingly, the increase in Ni loading from 24.4 to 33.2 Ni wt.% has a negative effect on both hydrogenation and ring opening activities, as it causes a drop in the BET surface area and a decrease in metal-support interaction, with a negative bearing on catalyst stability. On the other hand, the addition of Pd has a positive effect for hydrogenation, linked with the higher electronegativity of Pd0 species compared to those of Ni0, as well as with a greater stability of Pd-promoted catalysts during on-stream conditions. A linear correlation has been found between the total amount of desorbed H2, as determined from H2-TPD experiments on freshly reduced catalysts, and the initial turnover frequency.

Keywords

HPC W2C HCE