​​

Upgrading renewables, secondary, and waste streams through innovative hydroprocessing catalysts and reaction pathways

Problem statement

Hydroprocessing is a well-implemented and versatile refinery conversion strategy, comprising a wide array of reaction routes such as: (i) hydrotreating, aiming for the hydrogenation of unsaturated hydrocarbons and the removal (hydrogenolysis) of heteroatoms such as sulfur or nitrogen; (ii) hydrocracking, for promoting C–C bond scission and the partial saturation of aromatics; or (iii) hydrodeoxygenation, for the specific removal of oxygen moieties. In this project, we investigate the conversion of highly polyaromatic feedstock like heavy fuel oil (HFO), pyrolysis fuel oil (PFO), or bio-oils from different biomass sources (i.e., agricultural waste, algae) for quality improvement and obtaining products with higher added value.

We seek new (thermo-) catalytic strategies and improved heterogeneous catalysts with increased activity and stability. We put advanced analytical characterization techniques (i.e., nuclear magnetic resonance, high-res mass spectrometry) to work and combine their results with modeling and statistical tools.

Goals

  • Develop a quantitative analytical workflow to analyze and interpret these complex reacting environments
  • Explore novel renewable and waste resources to obtain chemicals and fuels
  • Deploy ad-hoc catalysts and process conditions to incorporate these wastes in the refinery (bio- and waste-refinery)
  • Analyze process dynamics and kinetics
HPC

Related People

Related Publications

Enhancement of Biphenyl Hydrogenation over Gold Catalysts Supported on Fe-, Ce- and Ti-modified Mesoporous Silica (HMS)

by Castaño, Zepeda, Pawelec, Makkee, Fierro
J. Catal. Year: 2009

Abstract

Mesoporous metallosilicates (HMS–M; M = Ce, Fe, Ti) were used as supports for the preparation of Au catalysts, and were tested in the liquid-phase hydrogenation of biphenyl at 5 MPa and 488 K. Irrespective of the support, uniformly dispersed Au nanoparticles in range 3.2–6.5 nm were obtained. The highest turn over frequency (TOF), expressed per surface Au atom, was achieved on the Au/HMS–Fe, furthermore this catalyst gave the highest selectivity to the most saturated compound (bicyclohexyl with the highest cetane number) by means of enhancing the second aromatic-ring hydrogenation. From the catalyst activity-structure correlation, the highest activity of the Au/HMS–Fe catalyst is linked with: (i) the higher ratio of positively charged metallic gold Auδ+/Si (XPS), and (ii) the higher stability of Au nanoparticles (HRTEM). A linear correlation between the activity (per gram of metal) of the catalysts and their ratio Auδ+/Si is observed; however, Au/HMS–Ce catalyst displays a different behaviour in terms of activity per gram of metal exposed caused by the fact that ceria is not incorporated in the framework.

Keywords

HPC HCE